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Abstract—In this paper we describe a Simultaneous Loca-
lization and Mapping (SLAM) approach specifically designed
to address the communication and computational issues that
affect multi-robot systems. Our method utilizes condensed
measurements to exchange map information between the robots.
These measurements can effectively compress relevant porti®n
of a map in a few data. This results in a substantial reduction
of both the data to be transmitted and processed, that renders
the system more robust and efficient. As documented by our
simulated and real world experiments, these advantages come et
with a very little decrease in accuracy compared to ideal (but T T A Aa/Sm | e
not realistic) methods that share the full data among all the ’W ..r"’/\\ WNJT’/’J\
robots. : 22 | \

. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is an(c) Map robot 1 + condensed graph  (d) Final global map

essential skill for mobile robots that have to execute cempl from robot 2

tasks in articulated environments. This problem has be&fg. 1: This figure illustrates a motivating example of our approach.

actively investigated by the community for over 20 yearsJwo robots cooperate to construct a map of a building containing

and effective solutions for single-robot systems are nayad & 100p of 250ma),b) Each robot is in charge of mapping one part

available. In contrast, very few works address the proble the large loop. Due to the lack of enough observations robot
e . . . commits a big error and fails in the estimation of its part of

of building a map with multiple robots. Within single-robot e 150p ¢), red square). However, it meets and localizes robot

SLAM, a prominent family of techniques are the so calle@ at two points of its trajectoryaf, blue squares) who sends a

graph-based algorithms [1], [2], [3], [4], [5]. Solving aagth-  compressed version of its map that contains measurements relating

based SLAM problem involves to construct a graph whostiese two locationsc) When robot 1 adds these measurements

nodes represent robot poses or landmarks and in which §jiU€ €dges) to its map, it improves its estimatia. Since the
maps become interconnected, we are able to reconstruct the global

edge between two nodes encodes a sensor measuremgtll by merging the individual maps and optimizing them together.
that constrains the connected poses. Once such a graph is

constructed by dront-end algorithm, the crucial problem just by constructing and optimizing the graph based on all
is to find a configuration of the nodes that is maximallymeasurements gathered by the robots. Unfortunately, such
consistent with the measurements. This involves solving an approach presents several challenges. First, detegnini
large error minimization problem which is often done byconstraints between pairs of robots’ graphs requires a re-
means of modern least-squares optimization approactses, abcalization scheme without any initial guess. This might
called back-ends in the SLAM context. dramatically increase the chances of adding wrong edges to
In principle, using multiple robots to acquire the map ighe graph, and would compromise the entire process. Second,
more robust, since the failure of a single system does natsuming to have an ideal error-free front-end, the graph
necessarily compromise the whole result. Furthermore, tlodbtained by each robot would rapidly increase its size. In
parallel acquisition of data by multiple robots might reésulthe worst case, each robot would add a set of edges to
in less time needed for building the map. Despite thesthe graph with a quadratic dependency on the number of
attractive properties, multi-robot systems for SLAM prgse robots. Consequently it would limit the on-line performanc
substantial challenges of both theoretical and practieal nof any state-of-the-art optimizer whose complexity royghl
ture. Ideally, existing algorithms for single-robot gralphised increases with the number of edges.
SLAM could be extended to handle the multi-robot case Furthermore, the above scenario assumes the robot can
This work was partially supported by Grupo DGA T04-FSE, tipau8sh perfectly Comm_umcate with ea,Ch ,Other' which is .typlcally
projects MICINN-FEDER DPI2009-13710 and DPI2012-360701e EU  Not the case. Wireless communications in large environsnent
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nication facilities and allows to dynamically add and remov algorithm to build a joint map from a team of robots without
robots from the system. initial knowledge of their relative positions. Therefore C
Each robot in the team computes its own map, but IEAM does not present a proper distributed SLAM solution
refines it by integrating a set of virtual or condensed medut a centralized version of the problem. Only simulated
surements coming from the other robots. These condensexbults are provided in the paper. A recursive solution for
measurements can be seen as a reduced version of thelti-robot pose graph SLAM is presented in [12]. The main
graph constructed by the other robots, that contains onhovelties of this approach reside on its incremental nature
the information relevant to the receiver in order to refine.e. the solution does not depend on a batch optimizatiar aft
its own map. This allows to substantially reduce the size ddll measurements are taken, and on the introduction of ancho
the optimization problem that each member of the team ha®mdes that allow each robot to use its own reference frame
to solve, thus increasing the efficiency. To localize a robavhereas inter-robot measurements and graphs obtained from
in any other robot’s graph with high presence of outliers, wether robots can be easily managed in the same framework.
propose a robust RANSAC-based approach that substantialiperefore in each encounter the robots interchange their
decreases the chances of wrong data associations and lgoaphs which do not need to be transformed to a common
closings. Our system has been tested both on real robdtame since can be tackled using the anchor nodes. The paper
and on simulated environments, and it will become availabldoes not take into account any issues of communication
as an open source ROS package. Figure 1 illustratesbandwidth constraints between robots.
motivating example of our approach. The closest approach to our proposed method is presented
in [13] and [14]. The authors address in [13] the multi-
Il. RELATED WORK robot problem with an extended Smoothing and Mapping
Most of the algorithms proposed for multi-robot SLAM approach called Decentralized Data Fusion (DDF) which is
during the last years have been motivated by the suecepresented using a factor graph. Each robot optimizes its
cess achieved by their corresponding single-robot SLAMwnN trajectory and its landmark map and then creates a
counterparts. It is not surprising then that many of theondensed map formed exclusively by the marginalization
first distributed implementations [6], [7], [8] were basedof common landmarks. These condensed maps are mutually
on the filtering (EKF/EIF) paradigm and inherited some ofnterchanged among neighboring robots to create a simpli-
its drawbacks: overconfident estimates due to linearimatidied neighborhood graph of landmarks that is optimized by
errors, quadratic computational cost and difficulty to reeach robot. To correct the local map with the information
cover from wrong data association decisions. Howevergthesbtained from the optimization of the neighborhood map a
works already described the main challenges encounterselt of hard equality constraints are established between ea
in multi-robot systems: bandwidth limitations, asynclooa neighborhood landmark and its corresponding local version
communications, coherent information integration andadain summary, robots get mutually connected by sending graph
association between different robots. In the same filteringodes of shared features that must be hard-linked with their
context we can find more recent works like [9] and [10]corresponding local representations. In [14] the work is
In [9] a Rao-Blackwellized Particle Filter is implementedextended with a novel multi-robot data association method
as estimation kernel that works in simple scenarios witfor robust decentralized mapping. The data association is
unknown initial correspondences. Each time a pair of robotsased on a triangulation algorithm that provides matching
communicate they have to calculate their relative transfobetween maps.
mation and interchange all the information gathered since Our multi-robot SLAM system is based on the concept
the last meeting. In [10], a distributed and decentralizedf condensed measurements [15]. During map construction,
cooperative SLAM algorithm based on the EKF is presentedobots meet and exchange data in different parts of the
In order to not duplicate the information transmitted bedwe environment. The messages are governed by a protocol
the robots the algorithm relays on a complex set of rulesxplained in detail later in the paper and results in each
and theorems that guarantee a coherent and consistent intebot augmenting its pose graph with a measurement about
change of information. the relative position of the encountered partner. Afterfitse
Graph-based optimization algorithms have become thencounter, each time a pair of robots meet they additionally
most successful techniques to solve the SLAM problem. limterchange a set otondensed measurements, which is
[3] we can find the first comprehensive graph-based approaplst a factor graph of the shared variables obtained from
to distributed SLAM with landmarks. The algorithm uses an approximation of their respective global graphs at the
multifrontal QR factorization in which no measurements arequilibrium. The advantages of this approach are three-
communicated between robots or robots and a server. Insteéald: 1- Each robot only carries its own graph that gets
the communication is limited to QR update messages, whighinimally augmented whenever an encounter with other
condense the entire measurement history on the individuadbot of the team takes place; 2- The mutual influence
robots into small upper trapezoidal matrices. The data-asdoetween the team of robots is easily tackled by using
ciation problem is not considered and the measuremerttge condensed measurements since only new virtual factors
are processed off-line for each robot. In [11] the authorgedges in the graph) between the shared nodes must be taken
present a Collaborative Smoothing and Mapping (C-SAMinto account in the optimization process; Neither special



constraints nor different graph representations are redui
3- The communication bandwidth is efficiently used since
a summarized (condensed) representation of the requir
constraints is transmitted between robots. In addition, w
propose a technique to robustly find alignments betwe
local maps. This technique is used to find loop closures
alignments between local maps from different robots.

. SINGLE ROBOT LEAST SQUARES SLAM AND Fig. 2:In this figure, we illustrate the use of condensed measure-
CONDENSED MEASUREMENTS ments to share information between two robots. The graph of Robot

: . . ed edges show the measurements between nodes of the Rebot
reduced to determine the positions of a robot along its tr%raph and the Robd#'s graph. Instead of sending to Robétll its

jectory x = (x1,...,x,)". This problem can be representedyraph, RobotB sends a condensed version, consisting of a central
by a graph. Each node of the graph represents a posiion node (gaugex,), and a set of condensed factors connecting the
of the robot, together with a measurement (image or lasgruge with each of the nodes;(: = 1...n) seen from RobotA.

scan) acquired at that position. An edge between two noddetice thatx, can also be selected from the nodes already seen by

encodes a measurement about the relative transformation%‘?bom'

the two connected nodes. These measurements can be CQPically good, since the robot can rely on an estimate that
puted directly from the odometry or indirectly by computingis constructed incrementally, and that at each point in time
relative transformations from the observations €.g. bygiai  contains all the information acquired so far. Conversaty, |

visual place recognition system or scan matching. ASsuminge multi-robot case it might happen that when two robots

that the measurements are affected by Gaussian noisem@et and want to share their map, the individual estimates
measurement between andx; is characterized by its mean 4re affected by a large error. Furthermore, to carry out the

z;; and its information matrix2;;. optimization by using one of these approaches, the two robot

In other words, in a pose-graph SLAM approach, Wgyoyld have to share their entire graph, which is potentially
assume that our robot is equipped with a simple sensor capgrqe.

ble of measuring the transformation between robot location T4 |essen this problem, in this paper we use an alternative

in the trajectory when they are either temporally or spigtial approach based on condensed measurements [15]. When two
close. _ robotsA and B meet, they share a reduced graph so that each
Given a pair of nodesx;,x; and a measurement;; ohot receives from the other only the information needed to
connecting both nodes, it is possible to compute the errggfine its own estimate. In this section, let us assume that
committed in the estimation: robot A knows which nodes of the other robBts graph he
1) observed. In order to optimize its own graph, by taking into
account the information fron#s, robot A should know how
wherez;; = h(x;,x;) is the expected measurement giverthese shared nodes are related in the space. This informatio
the current configuration of nodesg;,x;. In our case is clearly contained in the graph @, but it is too large to
h(x;,x;) computes the position and the orientationof be sent over the network. Instead of sending the full graph,
in the frame ofx;. B sends a “condensed” version that has substantially less
Let C = {(i,j)} be the set of pairs of nodes for which anodes, but that captures the information necessary to
measurement exists. The goal of a maximum likelihood perform this optimization. To this end, we regard the graph
approach is to find the configuration of node$ which of B as a local map. In Figure 2 we illustrate the process.
minimizes the overall error: Once we have a minimal error configuration for the graph
7 T of Robot B, we can compute the condensed factors. To this
Fi)= > efQeq @) end we need to select an arbitrary nodg in the graph.
We then need to compute a measurement betwgeand
x* = arg min F'(x) (3) each other nod&; which is seen by Robotl. This means
* that we need to compute a “measurement” betwegand
where (;; is the information matrix of measuremesnt;. x , that incorporates the knowledge in the original graph of
Thus, the SLAM problem is formulated as a nonlinear leastopot B that x, has about the position of;. This is done
squares problem which can be solved by using standard agy projecting the marginal covariance =f, with respect to
timization methods like the Gauss-Newton or the Levenberg  through the measurement functibiix,, x;) = x; © x,.

Marquardt algorithms. For more details we refer the reader to [15].
To solve this problem, modern optimization approaches
like g2?o [1] or SAM [16] require a time that depends IV. MULTI-ROBOT SLAM USING CONDENSED
on the number of edges, and their success in finding the GRAPHS
correct solution is affected by the initial guess availatae In this section we will describe in detail our multi robot
the system. In the single robot case, this initial guess SLAM system. Our approach operates on raw sensor mea-

eij (X, X;5) = 2i5 — Zij

(i,5)€C



surements acquired by mobile robots equipped with a laserThe local map is transmitted through a message containing
scanner. Inter-robot communication is based on a wirelesise following information:
ad-hoc network that dynamically adapts depending on the, The last measurement (laser scan) acquired, and the
mutual locations of the robots. Section IV-A presents the current id of the node Containing the laser scan in the
details of our communication model. graph.

Each robot executes a standard laser-based SLAM, The up-to-date estimated locations of the [Ashodes.

plrp:gl;]ngz the statel of the system is stored in a posr?-grawith this information each robot is able to reconstruct the
which is constantly optimized by thg”o optimizer. When 5.4 mans of the team mates in range. Notice that a robot

the robot moves for a certain distance, a new node is addedstgndS only the most recent laser scan, which is the bulky
the graph, and the odometry measurement is used to label t of the message. To determine a local map consisting of
edge between the new and the previous robot positions. TRe ¢~ans we need to buffer the last messages from each

laser scan acquired at the new position is matched against &,qer and render the scans according to the most redent lis
set of candidate scans stored in the nodes of the graph. Tl€.qtimates of the nodes. The latter is transmitted each tim
candidate nodes are selected if the current robot posaits f _ .\ hode is added to the graph. This allows to update the
inthgiruncertainty ellipses. This gives a set of candidate local maps with minimal communication overhead, even if
cI03|.ng edges. between non temporal!y sgbsequent nodes, tﬁfb graph changes its configuration. The local maps of other
are inserted in the graph upon validation by a RANSAGqts are used to localize them in the current robot's map.
based procedu_re c;lescnbed in Section 'V'_C' _ This is done by using a robust RANSAC-based outlier rejec-
To extend this single-robot SLAM algorithm to the multi- 5, scheme in combination with a correlative scan matching

robot case, we need to augment the graph-constructigiy s ithm, which is described in detail in Section IV-C.
method described above to handle information coming from manage the graph, a robot sends the following types
other robots. The multi-robot front-end will be in charge of ¢ messages: '

. robusttl)y Iozahzwlﬁ (_)ther robots into the curren: robot’s « A list of nodes of the other robot's local map it has
map, based on their raw sensor measurements. matched against its own local map.

o integrating the condensed measurements of the other. A condensed graph extracted by its own graph and

robots in the current graph. This is achieved simply by containing the edges among the nodes that have been
including the set of condensed edges. matched by some other robot

In the remainder of this section we describe in detail our .

L hese messages are sent whenever a new node is added to
communication model and how we address the problerrgﬁe raph. based on the number of mates in ranae
outlined above, by taking into account the limitations af th grapn, ge.
communication infrastructure. B. Multi Robot SLAM

A. Communication Model In this section, we illustrate how these messages are used

We assume that no infrastructure is present. Thus tH@ mplement our multi-robot SLAM approach. To simplify

communication between robots is point-to-point. Robots cal'e description, we refer to Figure 3 and without loss of

communicate only when they are within a certain distanc&€Nnerality we assume having only two robots:(red) and

and the communication graph changes dynamically based é’n(b_lge)' . .
the current configuration of our multi-robot system. Initially (see Figure 3a), each robot constructs its own map

This models conservatively the behaviour of wireless agith @ single-robot SLAM algorithm. When a communica-

hoc networks. Wireless communication has a limited rangdf" IS availableA starts receiving the current local map of

and bandwidth which will vary depending on the proto—B’ by storing its most recent readings. A matching procedure

col (WiFi, Bluetooth, ...), the IEEE standard used (e.gi.s executed to align the two local maps, and results in a set
802.11b/g/n...) and also the structure of the environméot. ©f candidate edges connecting the map/pfand the map
relying in infrastructure has substantial practical adagas. ©f £ (Se€ Figure 3b). When reasonably confident about the
The communication model proposed works in a robotEOrrectness of these edges, robbsends to this list (see
independent way, where the messages are transmitted asyfauré 3c).5B then computes a condensed graph containing

chronously and contain the most up-to-date informatiof"lY the nodes of its map that appear in the candidate edges

available. The probability that a message sent is correct|§und by A (see Figure 3d), and sends it th Finally 4,

delivered decreases with its size. To maximize the prolybil cludes these measurements in its own graph to get a more
that the messages are correctly delivered, in our algorithiPnSistent map (see Figure 3e). - _

we kept the size of the single messages as small as possible! NS @lgorithm can be implemented within a robétin
possibly fitting within an Ethernet frame (1400 bytes). Each straightforward way by maintaining the following data
robot periodically sends a ping and, based on the pirgfructures:

messages received by the other robots, it determines itse the graphG, obtained by single-robot SLAM

neighbors. When two robots are within communication range « for each other robot:

they send two kind of messages: to transmit their local maps — the most recent local map1g consisting of the
and to manage the graphs. last N nodes, that is used for cross-localization.
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given the scans. To this end we match each s¢anof

Fig. 3: lllustration of our Multi-Robot SLAM algorithm in a two M With each scas? of M4, by using a correlative scan
robots scenario. Robot is depicted in red and Robd? in blue. matcher. Note that each matching can result in zero or more

Triangles represent the nodes of the graphEach robot runs a solutions. Each of these solutions is then converted in an

graph-based SLAM algorithm and constructs its own map. Whe@dge betwees? ands4, and added to a pool of candidate
they are within a communication range, they share their current v 77

local maps;b) A localizes B and determines a set of candidateedges'
edges connecting the two maps; A informs to B which of its Given this pool of edges, we run a RANSAC based
nodes it has matched) B computes condensed measurements thggrocedure to determine which of them are inliers. The idea
connect the nodes in its own map that appear in the edges foupdthe following: to determine a translation between the two
by A; d) A includes these edges in its own graph. local maps it is sufficient to translate them so that one
— the list€® of candidate edges between the map O@andidqte edge; is satisfied (its error i9). Applying this
A and the map of3 that have been found hy. trapslaﬂon gffects the error of all other candld_ate eo_lga_sl,
_ the list ofé'g edges received fron, that connect th_elr error will be small if they are consistent with while it _
the map ofA and the map o3 and that have been ywl] be large othermse. Based on thgse errors we determine
found by B. inliers and the outliers and we decide whether to accept a
match or not. Figure 5 illustrates the procedure.
The bottleneck of this schema is the scan matching routine,
0s'ince the RANSAC requires typically very few iterations to

Each time the single-robot SLAM algorithm running oh provide a consistent solution. Accordingly, we need to tlimi
adds a new node to the graph, the estimate of the Nast the number of times we perform scan-matching. By consi-

nodes and the last laser scan are sent to allow the ottflf"ind that the local maps can be assumed to be consistent,
robots to construct the local map df SubsequentlyA runs and that one of the two local maps is acquired incrementally
a map-alignment algorithm between its local map and eadf'€ Scan at a time, we can implement the above procedure
M, and updates the list of candidate edges by using ttg " efficient way. Each time we receive a new ssdnwe
procedure described in the next section. match it against the local map constructed by the union of

Finally, by knowing€# Robot A computes which nodes all si. The scan matcher results in a set of transformations
of its own map are relevant for Robd, and sends the betweensf_ and the mapM 4. These transformatigns are
corresponding condensed measurements. In computing fRverted in edges betwesfi and the closest node i 4,
condensed measurements Rolatonsiders only the portion &ftér applying the transformation. The resulting edges are

of the graph acquired with its own sensors, thus avoidintpSerted in a pool. The RANSAC validation is done at every
multiple integration of information. Step, and the candidate edges that are marked as outliers for

a certain number of times are removed from the pool.

— the condensed grapgh? sent byB.

Robot A updates the local maps of each other robdéi
and the list of edge§3 whenever a new message is receive

C. Robust Map Alignment

In this section, we describe our approach to robustly align V. EXPERIMENTS
two local mapsM 4 and M g onto each other. A local map
consists of a portion of the graph. We recall that each node The multi-robot SLAM approach proposed in this pa-
consists of a robot pose and a laser scan acquired at tip&r has been validated through simulations and real world
pose. Figure 4 illustrates the problem. experiments. Our system is implemented in C++ as a ROS
Our goal is to find a set of edges between the nodes phckage, and the simulations have been conducted with the
the two local maps such that they are maximally consisterfstage simulator.



(a) Map robot 1 (b) Map robot 2 (c) Map robot 3

Fig. 5: Top: In red, nodes belonging to a local map, in blue,
current estimation of the received nodes and in yellow, the same
nodes with respect to the candidate closure edges. Dashed red lines
represent the error in the estimation for each edge. Middle: Green,
position of the nodes after applying the transformation (blue dashed (d) Global map

line) that makes the error of the first node equal to zero. With this

configuration, the error in the second and fourth nodes is small (thdsig. 6: Experiment at the Ada Byron building of the University
could be selected as inliers if the error is lower than a threshol@)f Zaragozaa), b), c¢) show the individual maps obtained by each
whereas the error in the third node is large (outlier). Bottomrobot, depicted in red, green and blue respectively. The condensed
Configuration of the nodes if the transformation to make the erraraphs received from other robots are depicted in the colour of the
of the third node equal to zero is applied. Since it is a wrongender robotd) shows the global map after all individual maps are
closure, the error in the rest of nodes is large, they are selectedrasrged and jointly optimized.

outliers and this configuration of nodes is rejected. Notice that this
procedure can be used whether the local maps are from different
robots or from the same robot trying to compute loop closing edges.

A. Real World

We conducted a real world experiment by using three
Pioneer 3-AT robots, equipped with SICK laser rangefinders.
The robots were simultaneously controlled by three persons
that steered them manually in the environment shown in
Figure 6. The robots communicated through an ad-hoc
network by sending UDP packets and each of them was
running the algorithm described in this paper. We previpusl
synchronized the clocks of all robots with NTP. To beFig. 7: Experiment at the DIS building of La Sapienza University

able to reproduce the experiment, we recorded a datagéfRome. The misalignment observed in the bottom right corner
originates from the fact that the robots never meet in that region,

containing the own measurements each robot '09_990' Its OWlis they are unable to determine constraints between that part of
measurements (odometry and laser), and the ping receivgdir trajectories. This can be recovered when the two robots meet
by other robots. This allow us to reproduce off-line then that region, or in a post-processing phase.
connectivity of the communication network, and repeat the ]
experiment off-board. B. Smulation results

The results of this experiment are shown in Figure 6. The We quantitatively evaluated the performance of our system
individual maps obtained by each robot together with théhrough simulation experiments. In particular, we measure
condensed graphs received from other robots are depictedhiow the proposed multi-robot system performs in terms
Figures 6a, 6b and 6¢. During their navigation, each robatf optimization time, bytes transmitted by each robot and
was able to meet and localize some other robot into itgccuracy with respect an ideal implementation in which the
own map. The meeting points are depicted with squares mbots share their whole graph instead of the condensed
the individual views. These intra-robot localizations mak version. Additionally, we want to analyze how these aspects
that all maps become interconnected which allows us tecale with the number of robots and therefore we tested our
reconstruct the global map shown in Figure 6d. In addition tapproach with 2, 4 and 8 robots. The simulation environment
the experiment described here, we executed additiona tes shown in Figure 8a. We designed trajectories such that
with Erratic robots equipped with an Hokuyo UTM lasereach robot met at least once with another robot. As an
rangefinder with two robots. The result after merging thexample, the trajectories and final map obtained in the 8
individual maps is shown in Figure 7. robots simulation are shown in Figure 8b.




the accuracy of our multi-robot SLAM approach with the
ideal implementation. We created a ground-truth graph by

extracting a set of virtual edges between neighboring nodes

— T by using the approach described in [17]. Table | shows
the overall mean Chi2 error per edge for each one of the
F simulations. The number of edges of each individual map

varies with the simulation, and from one robot to another.
For this reason we use the mean error per edge as a measure
@) of accuracy for both approaches. As it can be seen in Table
| the mean errors are very similar and therefore, we can
conclude that the accuracy is not sacrificed when sharing the
condensed graphs instead of the whole version. This result
is confirmed by the visual inspection of the maps.

Accuracy
Condensed Graph$ Ideal
2 robots 1.404 1.442
4 robots 1.572 1.548
8 robots 1.884 1.899

(b)

TABLE I: Comparison of the accuracy obtained by our condensed

Fig. 8: ) Simulation environmentb) Trajectories and final map Measurement multi-robot SLAM approach and the ideal implemen-
in a 8 robots experiment. tation. The numbers are the error of the edges in the ground-truth
graph, evaluated with nodes placed as reported by the algorithm.

Figure 9 shows the results for the optimization times and
communication overload obtained in the simulations. Qyear
the more robots are used_ for mapping the less time is peed@d Post Processing
to cover the entire environment and the smaller will be _ )
the map of each robot. Figures 9a, 9b and 9c show the The procedures descnb_ed above are the core of our multi-
optimization times for both approaches. It can be seen ho#®P0t SLAM. Compared with a centralized approach that has
in the condensed approach (green), the optimization tim&§cess to all |n_format.|(_)n of all robots, our system leads to
increase linearly as the map grows. Receiving a condens@dligher error in positions where the robots do not meet.
graph implies adding a few edges to their graphs and thichis arlses.from the fact .t.hat robots only share local maps
does not affect substantially the computation. In the ide@round their current position, thus they cannot relocalize
implementation (red), times grow also linearly with thelhis is visible in the right hand side of Figure 7. Solving
number of edges. However, this number has a substantf§S Problem would require transmitting substantial more
increment when the robots meet and receive the whole graffformation, since the robots would have to share all the

from the others. This happens, for example at time 350 imeasurements. Despite this limitation, our schema praduce
the two robots simulation. solutions that are sufficient for the robots to navigate. In

subsequent processing stage, a global accurate map can
e obtained by merging the solutions of all robots and
Q timizing them including the condensed measurements.
%r is aligns the map in a global frame. This map can be
prther improved by adding a set of constraints by matching

The communication overload is shown in Figures 9d, 9
and 9f. As explained in section IV-A, two kind of message
are sent, one containing the local map and another one
send the condensed graph. Transmitting the local map ha
constant size if the number of nodes to send is fixed. In ou g ) L
implementation, we transmit both the updated estimates angans betvx{een neighboring npdes. Due _to the good |r_1|t|al
ids of the last 5 nodes plus the last laser scan obtaininggétIeSS obtained by the map alignment, this step Is relatively

message of constant size of 1580 bytes. Since this Value%galghtforward, leading to results illustrated in Figd@
the same for both condensed and ideal approaches, this type

of message is not taken into account in the results. However, Vl. CONCLUSIONS
as it can be seen in the figures, the size of the messagesn this paper we proposed an approach for multi-robot
to send the graph in the ideal approach differs substantials| AM that specifically addresses the limitations in network
from the messages in the condensed approach, where the $ja8 computation affecting multi-robot systems. We have
of the messages stays below 1000 bytes in most of cases. Btwn that our method allows to obtain consistent estimates
size of the message that a robot has to send in the condenggdadding a relatively limited complexity to the traditidna
approach will grow with the number of nodes of its own magingle-robot SLAM methods. This results in an overall
another robot has matched. increase of robustness and computational efficiency with
By using the ground truth of the simulation, we comparedespect to naive MR-SLAM implementations.
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