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Abstract— The ability to simultaneously localize a robot and
build a map of the environment is central to most robotic
applications and the problem is often referred to as SLAM.
Robotics researchers have proposed a large variety of solutions
allowing robots to build maps and use them for navigation. Also
the geodetic community addressed large-scale map building for
centuries, computing maps which span across continents. These
large-scale mapping processes had to deal with several challenges
that are similar to those of the robotics community. In this paper,
we explain key geodetic map building methods that we believe
are relevant for robot mapping. We also aim at providing a
geodetic perspective on current state-of-the-art SLAM methods
and identifying similarities both in terms of challenges faced
as well as in the solutions proposed by both communities. The
central goal of this paper is to connect both fields and to enable
future synergies between them.

I. INTRODUCTION

The problem of simultaneously localization and map-
ping (SLAM) is essential for several robotic applications in
which the robot is required to autonomously navigate. A mo-
bile robot needs a map of its environment to plan appropriate
paths towards a goal location. Furthermore, following the
planned paths in turn requires the robot to localize itself in its
map. Many modern SLAM methods follow the graph-based
SLAM paradigm [1], [2], [3], [4]. In this approach, each pose
of the robot or each landmark position is represented as a node
in a graph. A constraint between two nodes, which results from
observations, is represented by an edge in the graph. The first
part of the overall problem is to create the graph, based on
sensor data and such a system is often referred to as the front-
end. The second part deals with finding the configuration of the
nodes that best explains the constraints modeled by the edges.
This step corresponds to computing the most-likely map (or
the distribution over possible maps) and a system solving it is
typically referred to as a back-end.

In the geodetic mapping community, one major goal has
been to build massive survey maps, some even spanning across
continents. These maps were supposed then be used either
directly by humans or for studying large scale properties of
the earth. In principle, geodetic maps are built in a similar
way to the front-end/back-end approach used in SLAM. Con-
straints are acquired through observations between physical
observation towers. These towers correspond to positions of
the robot as well as the landmarks in the context of SLAM.
Once the constraints between observation towers are obtained,
the goal is to optimize the resulting system of equations to get

the best possible locations of the towers on the surface of the
earth.

The aim of this paper is to survey key approaches of the
geodetic mapping community and put them in relation to
recent SLAM research. This mainly relates to the back-ends
of graph-based SLAM systems. We believe that this step will
enable further collaborations and exchanges among both fields.
As we will illustrate during this survey, both communities
have come up with sophisticated approximations to the full
least squares approach for computing maps with the aim
of reducing memory and computational resources. A central
starting point for the survey of the geodetic approaches is the
“North American Datum of 1983” by Charles R.Schwarz [5]
and we go back to the work by Helmert [6] published in 1880.
This paper extends [7] and presents a comprehensive review
of the geodetic mapping techniques that we believe are related
to SLAM.

In the remainder of this paper, we first identify the key
similarities between the challenges faced in geodetic and
robotic mapping. Second, we introduce graph-based SLAM
and provide a short overview on it. Third, we explain the
problem formulation for geodetic mapping and introduce
commonly used terminologies. We continue to explain the
approaches to geodetic mapping including the motivation and
insights central to the developed solutions. We then highlight
the relationships between individual SLAM approaches and
geodetic solutions.

II. COMMON CHALLENGES IN
GEODETIC AND ROBOTIC MAPPING

SLAM and geodetic mapping have several problems in
common. The first challenge is the large size of the maps.
The map size in the underlying estimation problems is repre-
sented by the number of unknowns. In geodetic mapping, the
unknown are the positions of the observation towers, while
for robotics, the unknowns corresponds to robot positions and
observed landmarks. For example, the system of equations for
the North American Datum of 1927 (NAD 27) required solving
for 25,000 tower positions and the North American Datum of
1983 (NAD 83) required solving for 270,000 positions [8].
The largest real-world SLAM datasets have up to 21,000
poses [9], while simulated datasets with 100,000 poses [10]
and 200,000 poses [4] have been used for evaluation. At the
time of NAD 27 and 83, the map building problems could not
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be solved by standard least squares methods as no computer
was capable to handle such large problems. Even nowadays,
computational constraints are challenging in robotics. SLAM
algorithms often need to run on real mobile robots, including
battery-powered wheeled platforms, small flying robots, and
low-powered underwater vehicles. For autonomous operation,
the memory and computational requirements are often con-
strained so that approximate but online algorithms are often
preferred over more precise but offline ones.

The second challenge results from outliers or spurious
measurements. The front-ends for both, robotics and geodetic
mapping, are affected by outliers and noisy measurements. In
robotics, the front-end is often unable to distinguish between
similar looking places, which leads to perceptual aliasing. A
single outlier observation generated by the front-end can lead
to a wrong solution, which in turn results in a map that is
not suitable to perform navigation tasks. To deal with this
problem, there recently has been a more intense research
for reducing the effect of outliers on the resulting map by
using extensions to the least squares approach [11], [12], [13],
[14]. For geodetic mapping, the front-end consisted of humans
carefully and meticulously acquiring measurements. However,
even this process was prone to making mistakes [5].

The third challenge comes from the non-linearity of con-
straints, which is frequently the case in SLAM as well
as geodetic mapping. A commonly used approximation is
to linearize the problem around an initial guess. However,
this approximation to the non-linear problem may lead to a
suboptimal solution if the initial guess is not in the basin of
convergence. There are various methods, which enable finding
a better initial guess, but this still remains a challenge [15],
[16]. The importance of the initial guess in SLAM has also
motivated the study of the convergence properties of the
corresponding nonlinear optimization problem [17], [18], [19],
[20].

Fourth, both geodetic mapping and SLAM ideally require
an incremental and online optimization algorithm. In robotics,
a robot is constantly building and using the map. It is ad-
vantageous if the system is capable of optimizing the map
incrementally [21], [22]. In geodetic mapping, new survey
towers are build and new constraints are obtained as and when
required. It is not feasible to optimize the full network from
scratch when new areas or constraints are added. Thus, also
geodetic methods must be able to incorporate new information
into existing solutions with minimum computational demands.

Given these similarities, we believe that studying the
achievements of the geodetic scholars is likely to inspire novel
solutions to large-scale, autonomous robotic SLAM.

III. GRAPH-BASED SLAM

In the robotics community, Lu and Milios [1] were the
first who introduced a least squares-based direct method for
SLAM. In their seminal paper, they propose the graph-based
framework in which each node models a robot pose and
each edge represents a constraint between the poses of the
robot. These constraints can represent odometry measurements
between sequential robot poses produced by wheel encoders

and inertial measurement units or produced by sensor fusion
techniques such as scan matching [23], [24], [25], [26].

Graph-Based SLAM back-ends aim at finding the con-
figuration of the nodes that minimize the error induced by
constraints. Let x = (x1, . . . , xn)T be the state vector where
xi describes the pose of node i. This pose xi is typically
three-dimensional for a robot living in the 2D plane. We
can describe the error function eij(x) for a single constraint
between the nodes i and j as the difference between the
obtained measurement zij and the expected measurement
f(xi, xj) given the current state

eij(x) = f(xi, xj)− zij . (1)

The actual realization of the measurement function f de-
pends on the sensor setup. For pose to pose constraints, one
typically uses the transformation between the poses. For pose
to landmark constraints, we minimize the reprojection error of
the observed landmark into the frame of the observing pose.
The error minimization can be written as

x∗ = argmin
x

∑
ij

eij(x)T Ωijeij(x), (2)

where Ωij is the information matrix associated to a constraint
and x∗ is the optimal configuration of nodes with minimum
sum of error induced by the edges. The solution to Eq. 2
is based on successive linearization of the original non-linear
cost typically around the current estimate. The non-linear error
function is linearized using Taylor series expansion around an
initial guess x̆:

eij(x̆ + ∆x) ' eij(x̆) + Jij∆x, (3)

with the Jacobian

Jij =
∂eij(x̆ + ∆x)

∂∆x

∣∣∣∣
∆x=0

. (4)

This leads to a quadratic form. In the end, the Jacobians from
all constraints can be stacked into a matrix and the minimum
of the quadratic form can be found through direct methods
such as Gauss-Newton, by solving the linear system

H∆x∗ = −b, (5)

where H =
∑

ij J
T
ijΩijJij and b =

∑
ij J

T
ijΩijeij are the

elements of the quadratic form that results form the linearized
error terms and ∆x∗ is the increment to the nodes in the graph
configuration that minimizes the error in the current iteration
at the current linearization point:

x∗ = x̆ + ∆x∗. (6)

As the measurements z and the poses x do not form
an Euclidean space, it is advantageous to not subtract the
expected and obtained measurement in Eq. 1 but to perform
the operations in a non-Euclidean manifold space [27], [28].
This is especially helpful for constraints involving orientations.

In their seminal paper [1], Lu and Milios compute Eq. 5
by inverting the quadratic matrix H . This is reported to be
the most computationally expensive operation as it scales
cubic with the number of nodes. A lot of graph-based SLAM
research focuses on efficiently solving Eq. 5 using domain
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Fig. 1. Observing towers called Bibly towers built for triangulating other
towers. Figure courtesy of [45].

knowledge and sparse linear algebra methods. Gutmann and
Konolige propose a method, which could incrementally build
a map and required the expensive matrix inversions only
after certain pre-determined steps [29]. Konolige provided a
computationally efficient algorithm with a complexity of O(n)
for single loop closures and O(n log n) for multiple looped
maps [30]. He identified the sparse connectivity of the infor-
mation matrix resulting from SLAM graphs and used Con-
jugate Gradient preconditioned with an incomplete Cholesky
factor to reduce computational requirements. Folkesson and
Christensen formulate the least squares problem in Eq. 2 as
an energy-minimization problem [2]. They also incorporate
data association within the energy function, which implicitly
performs a χ2 test. They furthermore reduce the complexity
and size of the graph by collapsing subgraphs into a single
node, which they call star nodes.

Dellaert and Kaess explore the graph SLAM formulation
as a factor graph using smoothing and mapping [31]. They
call their method

√
SAM as it uses matrix factorization

methods such as QR, LU, and Cholesky decomposition to
solve Eq. 5. Besides the offline approach, an efficient variant
for incremental updates using Givens rotation is available [32].

Other authors minimize Eq. 2 using relaxation techniques,
where parts of graphs are incrementally optimized [33], [34],
[35]. Olson et al. solve the least squares problem using
stochastic gradient descent [36]. In stochastic methods, the
error induced by each constraint is reduced, one at a time,
by moving the nodes accordingly. Grisetti et al. propose a re-
parametrization of the problem to improve convergence [37].
Stochastic methods are typically more robust to bad initial
estimates and can be run incrementally by tuning the learning
rate [38], [39]. Also hierarchical and submapping approaches
have shown to efficiently compute solutions by decomposing
the optimization problem at different levels of granularity [40],
[41], [27], [16], [42], [43], [44].

IV. GEODETIC MAPPING

Geodetics, also known as geodesy, is the science that studies
the earth at various global and local scales. It measures large

A

B

Fig. 2. A simple triangle net. The distance between towers A and B is
physically measured. Angular constraints to all other towers are measured and
the lengths of all other segments are computed with respect to the baseline
AB with the measured angles. Figure courtesy of [46].

scale changes in the earth’s crustal movements, tidal waves,
magnetic and gravitational fields, etc. The aspects of geodesy,
which we are most interesting in the context of SLAM, are
related to geodetic mapping. In this section, we first describe
how the massive geodetic surveys, which typically result in
triangle nets, are created. We then explain various geodetic
back-ends and compare them to current graph-based SLAM
methods for obtaining a minimal error configuration.

The basic principle behind geodetic surveying is triangula-
tion. Various observation towers, called Bibly towers, typically
20-30 meters in height, are built in line-of-sight with neighbor-
ing towers [46]. An example of a Bibly tower with surveyors
on top is shown in Figure 1. Geodetic surveyors built large
interconnected mesh of observation towers by triangulating
measurements between them. The resulting mesh of towers
and constraints is commonly called a triangle net. A simple
example of a triangle net is shown in Figure 2. Each line
segment in Figure 2 is a constraint between two observation
towers. Some of these constraints are directly measured while
others are computed using trigonometrical relationships.

The method of obtaining constraints between the observ-
ing towers has evolved over time. Initially, constraints were
distance only or angle only measurements. The distance
measurements were obtained using tapes and wires of Invar,
which has a very low coefficient of thermal expansion. Later,
more sophisticated instruments, such as parallax range-finders,
stadimeter, tellurometer, and electronic distance measuring
instruments were used. Angular measurements were obtained
using theodolites. Measuring distance using tapes and wires
is more cumbersome compared to computing angles with
theodolites. Hence, only a few distance measurements called
baselines are computed and the other distance measurements
are deduced based on angular measurements and trigonomet-
rical relationships. In Figure 2, the towers A and B are the
baseline and only angular measurements to other towers are
measured. The distances between all other towers are deduced
using the measured baseline AB, angles, and trigonometrical
relations.

Moreover, measurement constraints used in geodetic surveys
can be differentiated as absolute and relative measurements.
Absolute measurements involve directly measuring the posi-
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(a) The network of constraints used for the European Datum of 1987. Figure
courtesy of [47].

(b) The network of constraints existing in 1981 for mapping the North
American continent. Figure courtesy of [5].

Fig. 3. Triangulation networks spanning across Europe (left) and North America (right).

tion of a tower on the surface of the earth. These include
measuring latitudes by observing stars at precise times and
then comparing them to the existing catalogs. Stars were
also used as fixed landmarks for bearing only measurements
from different base towers at precisely the same time. Later,
more sophisticated techniques such as very long baseline
interferometry (VLBI) and GPS measurements, which lead
to an improved measurement accuracy, were introduced. An-
gular measurements obtained with theodolites for large scale
geodetic mapping were abandoned after the introduction of
VLBI and the triangulation techniques have been replaced by
trilateration around 1960. In the US, High Accuracy Reference
Network (HARN) was built using VLBI and GPS only [48]
by 1990. The Continuously Operational Reference Station
(CORS) introduced in 1995 uses only GPS measurements and
is regularly updated. National Spatial Reference System of
2007 known as NAD 83(NSRS2007) is the latest readjustment,
containing solely of static GPS measurements [49].

Examples of large scale triangle nets are shown in Fig-
ure 3. Figure 3(a) displays the geodetic triangle net used for
mapping Central Europe in 1987 whereas Figure 3(b) shows
the triangulation network in existence for mapping North-
America in 1983 (NAD 83). The thick lines in NAD 83 are
long sections of triangulation nets comprising of thousands of
Bibly towers. Connections between multiple sections are small
triangle networks and are called junctions.

The geodetic mapping community typically chose the
earth’s center of gravity as the sensor origin. This eased the
process of acquiring measurements as it is a quick and easy
to standardize calibration technique. The primary form of
triangulation was done using theodolites, all of which contain
a level, which allows aligning the instruments with respect
to the earth’s center of gravity (Ecg). All other instruments
use some form of a plumb-line as a reference, which aligned
them with Ecg . In fact, choosing Ecg is also preferred when
using satellites for acquiring measurements as they orbit the
earth’s Ecg . The exact shape of the earth is not a sphere but a
geoid, which can be approximated as an ellipsoid. However,
the center of this approximate ellipsoid does not coincide
with Ecg . This is because earth’s mass is not uniformly
distributed. Hence, although choosing the sensor origin as Ecg

is practically a good choice, it is mathematically inconvenient.
It requires additional mathematical computations for mapping
measurements to the center of the ellipsoid. This problem is
commonly called computing the “deflection of the vertical”.

The geodetic mapping problem can be broken down into
two major sub problems, the first being the “adjustment of
the vertical”, the second being “adjustment of the net”. The
problem of “adjustment of the net” is finding the least squares
system of the planar triangulation net whereas “adjustment of
the vertical” involves finding parameters to wrap this mesh
network on a geoid representing earth [50].
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V. ADJUSTMENT OF THE NET – GEODETIC BACK-ENDS

The problem of adjustment of the net is similar to the
graph-based SLAM formulation. In the SLAM notation, the
geodetic mesh network consists of various observation towers
constrained by non-linear measurements. These physical tow-
ers are similar to the unknown state vector x = (x1, . . . , xn)T

in the SLAM problem. In SLAM, 2D and 3D robot headings
(roll, pitch and yaw) are estimated in addition to the the
Cartesian coordinates (x, y, z). For geodesy, the surveyors
were mainly interested in Cartesian coordinates of the towers
on the surface of the earth. Angular components were used
until the 1960ies in geodesy before GPS and VLBI systems
were available.

The task of the back-end optimizer in geodesy is to find
the best possible configuration of the towers on the surface of
the earth to minimize the sum of errors from all constraints.
All non-linear constraints can be linearized using Taylor
series expansion and stacked into a matrix [8]. The least
squares solution can be computed directly by solving the least
square system in Eq. 5. Both, SLAM and geodetic problems
inherently contain non-linear equations constraining a set of
positional nodes. The process of linearizing the constraints
and solving the linearized system is repeated to improve the
solution.

The biggest challenge faced by the geodetic community
over centuries was limited computing power. Even with the
most efficient storage and sparse matrix techniques, there was
no computer available which could solve the full system of
equations as a single problem. For example, the NAD 83
mesh network, illustrated in Figure 3(b), requires solving
900,000 unknowns with 1.8 million equations [51]. A dense
matrix of size 900,000 times 900,000 would require more
than 3000 GB just to store it. Even when using sparse matrix
data-structures such as compressed sparse rows or columns,
NAD 83 would still require roughly 30 GB of memory to store
the matrix of normal equations (considering that only 0.5%
of the matrix elements are non-zeros). In the next section,
we explain some of the geodetic back-end optimizers used
for mapping large continental networks such as that of North
America and Europe.

A. Helmert Blocking

When geodetics started to develop the large scale triangula-
tions in the mid-1800s, the only way of solving large geodetic
networks was by dividing the problem so that multiple people
could work on solving each subproblem. Helmert proposed
the first method for solving the large optimization problem
arising from the triangulation network in parallel. His strategy,
which was proposed in 1880, is possibly the oldest technique
to partition the set of equations into smaller problems [6],
[52]. Although graph partitioning and submapping has been
frequently used in robotics, to the best of our knowledge,
Helmert’ method has not been referenced in the robot mapping
community—only Triggs et al. [53] mention it as an optimiza-
tion procedure in their bundle adjustment survey.

Helmert observed that by partitioning the triangle net in a
particular way, one can solve the overall system of equations

Triangle net Stacked coefficient matrix

(a)

(b)

(c)

(d)

(e)

Fig. 4. Helmert blocking in action. The left column shows a toy example
of triangle net. The right column shows the corresponding stacked coefficient
matrix for each net.

in parallel. He outlined that the whole triangle net can be
broken into multiple smaller subnets. All nodes that have
constraints only within the same subnet are called inner nodes
and can be eliminated. All separator-nodes, i.e., those that
connect multiple subnets, are then optimized. The previously-
eliminated inner nodes can be computed independently given
the values of the separator nodes. Most importantly, the so-
formed subnets can be solved in parallel. Helmert’s blocking
method is outlined in Alg. 1 and is explained more precisely
as a mathematical algorithm by Wolf in [54].

Consider a simple triangle net shown in Figure 4. In
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Algorithm 1 Helmert Blocking
1: Given a partitioning scheme, establish the normal equa-

tions for each partial subnet separately
2: Eliminate the unknowns for all nodes which do not have

constraints with neighboring partial subnets
3: Establish the main system after eliminating all the inner

nodes containing only intra-subnet measurements
4: Solve the main system of equations containing only sep-

arator nodes
5: Solve for inner nodes given the value of separator nodes

Figure 4(a), each line segment is a constraint and the end
of segments represent a physical observation tower. Helmert
observed that if he divides the triangle net into two halves,
for example as illustrated in Figure 4(b), the top half of the
towers will be independent of the bottom half given the values
of the separators as shown in Figure 4(c). Such a system can
be solved using reduced normal equations [54], [5].

Let us represent the whole system of equations from the
triangle net in Figure 4(a), as:

Ax = b. (7)

This equation can be subdivided into 3 parts in the following
manner:

[
As A1 A2

] xs

x1

x2

 = b. (8)

Here, As and xs represent the coefficients and unknowns
respectively, arising from the central separator. A1 and A2

are coefficients of the top and bottom subnets. The coefficient
matrix

[
As A1 A2

]
in Eq. 8 is shown on the right-hand

side of Figure 4(c). The corresponding system of normal
equations is:Ns N1 N2

NT
1 N11 0

NT
2 0 N22

xs

x1

x2

 =

bsb1
b2

 . (9)

The towers in x1 do not share any constraints with towers
in x2. Both, x1 and x2 share constraints with xs but not with
each other. The key element in Eq. 9 is the block structure of
N11 and N22. The system of equation in Eq. 9 can be reduced
such that:

N̄sxs = b̄s, (10)

where N̄s is computed as:

N̄s = Ns −
[
N1 N2

] [N−1
11 0
0 N−1

22

] [
NT

1

NT
2

]
= Ns −

∑
i=1,2

NiN
−1
ii N

T
i , (11)

and b̄s is computed as:

b̄s = bs −
∑
i=1,2

NiN
−1
ii b

T
i . (12)

Fig. 5. The structure of the coefficient matrix arising from two levels of
Helmert blocks. The arrows show non-zero cells.

Fig. 6. Helmert blocking applied to North America with ten levels. The
legend in the bottom left corner shows progressive levels of partitions. The
first partition, cuts the continent into east-west blocks, whereas the second cut
partitions each half into north-south blocks. Hence, each geographical block
is partitioned into four regions and this method is recursively performed on
each sub-block. Figure courtesy of [5].

Here, N̄s is called the reduced normal equations. Once Ns

has been solved, x1 and x2 can be computed by solving:

N11x1 = b1 −NT
s xs (13)

N22x2 = b2 −NT
s xs. (14)

Moreover, Wolf states that matrices should never be inverted
for computing Eq. 10, 13, and 14 [54]. Instead, Cholesky
decomposition or Doolittle-based LU decomposition should
be employed. The steps outlined for computing the reduced
normal forms in Eq. 11 and 12 represent the Schur comple-
ment. The inverse computation in this step is trivial if the
subnets result in block diagonal matrices. If not, both Wolf
and Schwarz mention that each of the subnets can themselves
be sparse and can be further sub divided as illustrated in
Figure 4(d) [54], [5]. Part IV of [49] also contains a detailed
methodology for applying Helmert Blocking for optimizing
geodetic networks used for National Spatial Reference System
of 2007.

The structure of the normal matrix represented in Fig-
ure 4(d) looks like the matrix represented in Figure 5. In
the example explained in Figure 5, we have two levels of
Helmert blocks. The number of levels can be arbitrary and
each subnet can have a different number of recursive sub-
blocks. Elimination takes place in a bottom-up manner. Then,
the solution at the highest level is used to recursively propagate
back to smaller subnets. Helmert also outlines the strategy
to select separators at each level. This is discussed later in
Section V-G.
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The Helmert blocking method was used for creating the
North American Datum of 1983 (NAD 83). Ten levels of
Helmert blocks were created with a total of 161 first level
blocks. This is illustrated in Figure 6. The colored lines show
the partitions of the graph at different levels. On average each
of these 161 subnets contained 1,000 nodes, but roughly 80%
of these nodes contained only internal measurements and can
be eliminated [5]. Three non-linear iterations of the whole
system were performed, which took roughly four months
each [5].

The Helmert blocking method is inherently multi-core and
parallel but it still requires solving a large number of equations
when solving for the reduced normal equation for a large
separator set. The complexity of the exact method can be
reduced if networks are built in sections as shown in Fig-
ure 7(b). Whenever the triangular network was not built using
long sections, the net was approximated using polygon filling
methods, which are explained below.

B. Polygon Filling

Polygon filling methods are used to convert a dense net
into sections. An example for a dense network is shown in
Figure 7(a) and the corresponding sparse mesh of sections
in Figure 7(b). Inner regions in Figure 7(b) are completely
removed from the initial optimization. Only the sections as
shown in Figure 7(b) are optimized. In a subsequent optimiza-
tion, the structure of the grids is fixed and the interior dense
nets are optimized. This is an approximation as the optimiza-
tion of the sections does not contain any measurements from
the interior nets. Any error in the sections is distributed over
the interior, shaded subnets [55].

Helmert’s method can also be exploited in meshes compris-
ing of sections to reduce the number of separator nodes. The
colored small squares in Figure 7(c) are the separators after
applying Helmert’s method on the section and their size is
much smaller compared to those depicted in Figure 4. The new
separators are formed at the intersections of the sections rather
than the long partitions in the original method. This difference
can be observed by comparing Figure 7(c) and Figure 4(e).

The polygon filling method is also the preferred technique
for incremental optimization. As triangulation networks evolve
over time, large sections are built first and are subsequently
triangulated densely—if and when required. This means that
the outer sections are fixed and are never updated with
measurements from inner nodes. Thus, any error in the initial
optimization of the outer section has to be distributed over
the inner regions. Even when adding new sections from new
surveys covering unmapped area, the initially obtained sections
are often kept fixed. Although this procedure is an approxi-
mation, it allows for increasing the size of a triangulation net
without having to start the optimization from scratch. Thus, it
is an efficient incremental map building method.

C. The Bowie Method

The use of networks of sections and the polygon filling
method reduces the size of the optimization problem signifi-
cantly but it is still computationally demanding considering the

(a) Original triangle net. (b) Polygon filled net.

(c) Helmert’s method ap-
plied to polygon filled net.

Fig. 7. The original triangle net (a) and the corresponding net after applying
the polygon filling method (b). This leads to a smaller and better tractable
problem at the expense of reduced accuracy. Once the sparse solution is
computed, the interior stations can be computed by fixing the sections. Also
here, Helmert blocking can be applied leading to the separator nodes illustrated
by the colored squares (c).

(a) (b)

Fig. 8. Bowie’s approximate triangle net. Size of separators are much smaller
once the polygon filling method is used. The separators are shown in colored
squares (left). The Bowie method approximates this problem by abstracting the
sections into a single constraint and all separator nodes as a single node (right).

resources of the early 1900s. Bowie approximated the above
methods further to create the North American Datum in 1927.
Bowie’s main insight was that he can approximate the net
comprising of sections by collapsing intersections into a single
node and the sections into a single virtual constraint. This is
illustrated in Figure 8. This much smaller least squares system
is solved to recover the positions of the intersections, which
can then be used to compute the sections independently.

The core steps of the Bowie method consist of separating the
sets of unknowns into segments and junctions. The junctions
act as a small set of separator nodes. The junction nodes
are shown as colored squares in Figure 8. These are not a
single node but a small subnet of towers, which separates the
sections. A generic junction is shown in Figure 9. All nodes
in one junction are optimized together using least squares
adjustment but ignore any inter-junction measurements. After
this optimization, the structure of the junction does not change,
i.e., each node in a junction is fixed with respect to other nodes
in that particular junction.

As a next step, new latitudinal and longitudinal constraints
are created between junctions. This is done by approximating
each section with a single constraint. Each of such single con-
straints is a two-dimensional longitude and latitude constraint.
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Baseline

Fig. 9. Example of a typical junction connecting segments in the four
directions. The baseline and azimuth of stations 1 and 2 were measured
directly. All other measurements were relative to other stations. Figure
courtesy of [5].

As a result, each junction turns into a single node and each
section into a single constraint. This leads to a much smaller
but approximate problem, which is optimized using the full
least-squares approach.

The above described steps of the Bowie method are sum-
marized in Alg. 2, see also Adams [56]. The full least squares
problem is not solved by matrix inversion but by a variant
of Gaussian elimination called Doolittle decomposition (see
Wolf [57]). The Doolittle algorithm is a LU matrix decompo-
sition method, which decomposes a matrix column-wise into a
lower triangular and upper triangular matrix. The solution can
be computed using forward and backward substitution steps
as with other matrix decomposition methods as well.

In essence, the Bowie method generates new, virtual con-
straints from sections. He introduces a weight for each virtual
measurement, which are chosen as the ratio of the length of
the section with respect to the sum of all the section lengths.
Hence, these weights are proportional to the length of the
sections so that the larger proportion of the error is distributed
over long sections compared to shorter ones.

Another computational trick to lower the efforts is to use
diagonal covariances for the two-dimensional, virtual, lati-
tude/longitude constraints. This enables to separate the system
of equations for longitude and latitude. This yields two least
squares problems with half of the original size.

The partitioning of the triangular net into junctions and
sections is done manually. Each junction has to contain at
least one measured baseline and one measured azimuth direc-
tion. This is sometimes referred to as astronomical stations.
Occasionally, the size of junctions were enlarged to include
an azimuth measurement because azimuth measurement have
not been taken at all towers. Figure 10 illustrates the original
triangle net and Bowie’s approximated net into segments
and junctions used for NAD 27. In Figure 10, the small
circles represent junctions and all lines connecting junctions
are sections of triangle nets. These sections and junctions

individually represent a subset of the constraints connecting
stations.

In sum, the Bowie method is an approximation of Helmert
Blocking. The approximation uses single level subnets and
an approximate optimization of the junction nodes. The opti-
mization of the highest level in Helmert Blocking consists of
junction nodes and is computed via reduced normal equations.
In contrast to that, the Bowie method uses virtual constraints
at the highest level. The main difference is that the system of
equations created by the virtual constraints is much smaller
and sparser and hence easier to optimize than the full set of
reduced normals as in the exact Helmert blocking method.

To the best of our knowledge, the Bowie method is the
first implementation of a large scale approximate least squares
system. It was effectively used in creating the NAD 27 as the
triangulation nets were build in sections forming large loops.
The Bowie method exploits this structure and also allows
incremental optimization. New loops in the triangulation nets
were not optimized as a whole, instead, they were integrated
into the existing system by keeping the previous positions
fixed. This led to inaccuracies but was better tractable than
optimizing the system as a whole.

Algorithm 2 Bowie method
1: Separate triangle net into junctions and segments.
2: Optimize each junction separately.
3: Create new virtual equations between junctions treated as

a single node
4: Solve the abstract system of equations comprising of each

junction as a single node and each section as a single
constraint

5: Update the resulting positions of stations in the segments
using the new junction values

D. Modified Bowie Method for Central European Triangula-
tion

The approximation introduced by the Bowie method yielded
suboptimal results for the European Datum of 1950 [55]. For
example, the virtual latitudinal and longitudinal constraints
are artificially generated and not directly measured constraints
but this fact is not fully considered in the optimization. Fur-
thermore, cross correlations between latitudes and longitudes
are ignored by using diagonal covariances and the junctions
are fixed as a whole. Another issue in the Bowie method
results from the assumption that the size of sections are much
longer than junctions, which was the case for NAD 27, but
the triangulation nets in the European Datum of 1950 (ED 50)
are more dense. This results in the amplification of the errors
introduced by the approximations [55].

The European geodetics thus proposed two modifications to
the Bowie method to cope with the above mentioned problems
for optimizing the ED 50 [55]. The first one addresses the
virtual measurements. Line 3 of Alg. 2 sets up as many
equations as sections. Instead, one virtual equation for every
loop was created, enforcing a zero error around the loop.
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(a) The triangle net used for creating NAD 27.

(b) The Bowie method as applied for solving NAD 27.

Fig. 10. Bowie method as used for NAD 27 triangle net (top). The figure
below illustrates Bowie’s approximation. Each small circle represent a junction
and the junctions are connected by sections. Given the values of the junctions,
the segments are independent of the rest. The western half contains 26
junctions and 42 sections creating 16 loops. The eastern half contains 29
junctions and 55 sections forming 26 loops. All measurements were computed
with respect to Meades Ranch located in Kansas shown by the big circle in
the center. The numbers inside the regions depict the error in a loop after the
optimization is completed. Figure courtesy of [5].

The second modification addresses the way the linear sys-
tem is solved efficiently. Instead of using the Doolittle method,
they used the Boltz method, as explained below, which allowed
for computing the matrix inversion in one shot.

E. Boltz Method

The Boltz method is an alternative to the Gaussian elimina-
tion with LU decomposition for solving large set of equations
in one shot [58], [59]. An explanation of the Boltz method was
provided by Wolf, which basically says that Boltz was tabu-
lating matrices and their corresponding inverted solution [57].
Boltz was able to simply look up the solutions for subproblems
from a table instead of recomputing the inverse.

The central question here is how to setup the linear system
so that the matrix of the normal equations, which needs to be
inverted, reappears during the calculations. In general, for this
method to work infinitely many matrices would need to be

tabulated. To keep the number of tabulated matrices tractable,
Boltz proposed to divide the equations into two groups:[

A B
BT C

] [
x
y

]
=

[
v
w

]
. (15)

Here, A, B and C are coefficients of the normal matrix and x
and y are unknowns. Boltz proposed to cache A−1 and solve
the reduced system of equation via[

C −
[
BTA−1B

]]
y = [w −BTA−1v]. (16)

The key idea is to separate angle-only measurements from
all others. Let x be the unknowns that arise from angle-only
measurements, while y arise from all other measurements (see
also [55]). The constraints in x are simple given the triangular
structure of the net: the sum of the angles in a triangle equals
180◦, the sum of angles around a point must add up to 360◦.
Hence, the coefficients of the matrix A in Eq. 15 and Eq. 16
can be written so that it contains only 1’s, 0’s and -1’s. This,
in combination with domain knowledge about the structure of
the triangular nets, allows for efficiently caching A−1. Boltz
method is designed for triangle nets in which the structure
repeats itself. This is often the case in geodetic mapping.

The look up was done by humans but we could not find
details about the procedure for physically storing and retriev-
ing the inverted matrices. One might even spot similarities
between Boltz’ proposal of caching matrix inversions and
techniques like lifted probabilistic inference [60]. Caching
can result in a substantial performance gain if majority of
operations are done manually as was the case for the ED 50.
Boltz’ method was successfully used for eliminating up to 80
by 80-sized matrices when creating ED 50 [55].

Note that reduction in Eq. 16 is the Schur compliment but
the motivation behind using the Boltz method is the fact that
A−1 is tabulated and looking up the inverse is substantially
faster than computing it (by hand). The geodetic researchers
prior to 1950 mention that the Boltz method allowed solving
least squares without biasing the solution towards any partic-
ular unknown. They mention that the Boltz method treated
all unknown equally unlike the Gaussian elimination which
caused the last variable to contain larger errors1.

F. The Indian Method of 1938

Bomford proposed a different approach than the above
mentioned methods for solving the triangulation net for the
Indian subcontinent in 1938 [62]. He mentions that the Bowie
method was infeasible for optimizing the network of towers
in India, as the number of astronomical stations was too small
and each junction in the Bowie method requires to have an
astronomical station with independent latitude and longitude
observations.

1From [61]: “A method devised by Boltz for solving the normal equations
occurring in the adjustment of a triangulation network; it allows a large
set of equations to be solved in one straight operation by the method of
least squares without biasing the solution towards any particular unknown.
Initially, the normal equations were solved using the Gaussian method of
successive elimination. This method, however, causes the last determined
value to contain larger errors than the first determined value. Boltz’s method
treats all unknowns equally and is particularly suitable for solving large
systems of equations.”
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(a) The mesh net with circuit errors on a zoomed section. (b) The resulting optimized net with the correction for each
junction.

Fig. 12. A zoomed in view on the North-East section of the Indian subcontinent. It shows the initial and final configuration of the triangle net used in 1939
for surveying India. The solid lines represent the initial spanning tree. The dotted lines are sections which induce circuit points and thus a residual error. Each
circuit point contains the latitudinal residual error (top) and longitudinal residual error (bottom). Figure courtesy of [63].

(a) The Indian triangulation net on the map of the
Indian subcontinent. The blue region shows the area
covered by sections of nets and the solid line is the
represented single section.

(b) The triangulation net with circuit errors at intersec-
tions.

Fig. 11. The Indian triangulation net (top) and the section network with errors
in circuit points (bottom). The dotted lines are sections, which complete loops.
The point of intersection between a solid and a dotted line is a circuit point,
which has a latitude and longitudinal error induced by the dotted line. Figures
courtesy of [62].

The starting point of the Indian method is similar to the
Bowie method. Junctions and sections are created from the
triangle nets. These junctions are points of intersection of
sections and do not require any astronomical constraints. This
is illustrated in Figure 11(a). A spanning tree consisting of
sections and junctions is chosen from the mesh network of
the triangle nets. The initial spanning tree does not have
errors as there are no loops and it is depicted by the solid
lines in Figure 11(b). All other sections that are not part of
the spanning tree will introduce a residual error (see dotted
lines). Bomford refers to the points where multiple sections
meet and have a residual error as circuits. These circuit points
have a residual in latitude and longitude. A zoomed-in portion
of the North-east part of the map is shown in Figure 12.
Fig.12(a) illustrates the errors in latitude and longitude at each
circuit point. Bomford proposed that the error in circuit points
could be solved by distributing it around the loop. He had
no automated system to distribute errors around the loop.
He manually performed trial and error methods to reduce
the total error induced in the circuit nodes. For example, he
states that he first reduced the longitudinal error in the North
West regions, shown in Figure 12(a), by adjusting longitudinal
values of the lower section. He incorporates the “stiffness” of
sections, which he approximated by the length and uncertainty
of the sections [62]. This method does not appear to be as
rigorous as the Bowie or Helmert methods but still resulted in
accurate maps of the Indian subcontinent.

G. Variable Ordering

In Sec. V-A we outlined the Helmert Blocking method but
did not mention how the partitioning was performed. Helmert
himself provided simple instructions for creating subnets and
for partitioning the blocks, which is critical for his method.
He first instructed to pick a latitude such that it partitions all
the towers roughly into halves. Next, a longitude is chosen
for each upper and lower half to partition the Northern
and Southern regions into Eastern and Western partitions.
Each obtained geographical rectangular block is recursively
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(a) A planar mesh partitioned accord-
ing to nested dissection.

(b) The corresponding matrix pic-
ture for this net.

Fig. 13. Nested dissection and the corresponding matrix arrangement. The
four higher block with nodes numbered 1 and 2 are independent given the
separator 3. All sub-blocks numbered 1 are independent given the sub-block
numbered 2.

partitioned into four further blocks. This strategy is illustrated
in Figure 4(d) and Figure 4(e). The proposed method is
simple but effective, since the triangulation network is built
roughly as a planar graph and the density of the net was
approximately similar across different locations. Helmert’s
approach to partition the triangle nets also shares similarities
to the nested dissection variable reordering strategies [64] used
to efficiently factorize sparse matrices. The use of variable re-
ordering significantly improves the computation and memory
requirements for matrix decomposition methods [65], [66].

The nested dissection variable reordering scheme was ini-
tially proposed for solving a system of equations for n×n
grid problems arising from finite-element discretization of
a mesh [64]. It partitions the graph with “+” shapes, as
illustrated in Figure 13. Each resulting block is then recur-
sively partitioned with a “+” shape. The number on each
partition corresponds to the entry in the coefficient matrix.
Helmert’s proposal to divide a triangulation net recursively
along latitudes and longitudes was used by Avila and Tomlin
for solving large least squares using the ILLIAC IV parallel
processor for optimizing geodetic networks [67]. Later, Golub
and Plemmons used the Helmert blocking variable ordering
strategy for solving large system of equations using orthogonal
decomposition techniques such as QR decomposition for the
system of equations arising from the geodetic network [68].

Given that both, Helmert’s proposal and the nested dissec-
tion algorithm, are so similar, researchers performed a study
to understand the best way to create the separators and to
join the blocks given a four-way partitioning for NAD 83 [5].
Figure 14 shows four ways of joining a block partitioned into
four sub-blocks. The partitioning can be done using either
Helmert’s strategy or nested dissection. The key design choice
is whether to use a deep tree or a broad tree strategy as
shown in Figure 15. The deep tree strategy creates smaller
and denser final blocks while broad trees result in larger and
sparser blocks. This can be seen from Figure 15 (left) and
Figure 15 (right) for a simple example. The large sparse matrix
in the broad tree strategy implies further variable reordering
to minimize the matrix fill-in. In the deep tree strategy,
parallelism can be exploited better, but it requires more matrix

(a) Geographical partitioning of area
into four parts

(b) Deep tree (c)

(d) (e) Broad tree

Fig. 14. Possible different ways for joining four Helmert blocks according
to [5]. The top row shows a rectangular area partitioned into four blocks,
which can be joined in four ways.

allocations. In the simple example shown in Figure 15, seven
matrices are allocated for the deep tree compared to five
allocations for the broad tree. Hence, the deep tree strategy
was preferred for NAD 83 to enable more parallelism and as
the created, dense sub-blocks do not require further reordering.

H. Removing Outliers for Geodetic Mapping

The task of traditional geodetic mapping involves hundreds
of surveyors working in parallel to obtain measurements. This
also results in many faulty constraints [5]. The typical source
of faulty constraints are human errors, errors in instruments,
and sometimes errors when transferring entries from physical
journals into the database management systems. For NAD 83,
erroneous constraints are detected and removed through a
block validation process. The block validation process vali-
dates constraints and towers in small geographical regions,
one block at a time. The blocks are created by a geographical
partitioning of stations as shown in Figure 16. These also
represent the lowest level of Helmert blocks.

The block validation process consists of two iterating steps.
First, by identifying under-constrained nodes and second, by
checking for outliers given small blocks of nodes. If any node
in a block is under-constrained, either additional constraints
are added from neighboring blocks or the node is removed
from the block. This avoids any singularities within the least
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Fig. 15. Comparison between deep tree (left) and broad tree (right) ordering according to [5]. The area is partitioned into four blocks labeled 1, 2, 3 and 4.
a to e represents separator variables. The variable set e are separators with constraints in all 4 blocks, a are variables with constraints only between blocks
1 and 3, b are variables constraining between blocks 1 and 2 only, etc. In this example, the deep tree approach would merge two subgraphs at a time, while
the broad tree approach merges four subgraphs at a time. In both methods all low level subgraphs labeled 1 to 4 are processed in parallel. The deep tree
method requires two more matrix allocation compared to the broad tree approach but the broad tree approach results in a larger matrix with zero blocks,
which require additional variable re-ordering to reduce computation.

squares solution. After this issue is resolved, the block is op-
timized and all constraints having a weighted residual error of
greater than three (χ2 > 3) are evaluated. These are regarded
as possible erroneous constraints. A constraint with a large
residual error (χ2 > 3) is deleted if there is another constraint
between the same nodes having a similar sensor modality but
a smaller residual error. A constraint with high residual error
is also deleted if there are additional constraints between other
nodes capable of constraining the nodes under consideration.
If no additional constraints are found, the standard deviation
of the possible outlier constrained is doubled until χ2 < 3. In
other words, the assumed sensor noise for this constraint is
increased, which is a similar principle behind m-estimators in
robust statistics [69], [70].

The whole process of optimizing a sub-block and evaluating
constraints with large error is repeated till the block is free of
outliers. For NAD 83, a total of 843 blocks were evaluated
using block validation methods, as illustrated in Figure 16.
Each block consisted of 300 to 500 nodes and required
roughly one person month to validate [5]. This process for
outlier detection was also used as recently as 2007 for
NAD83(NSRS2007), where seven trial solutions were carried
out to account for outliers, singularities and handle weakly
determined areas [49].

Fig. 16. Boundaries of blocks of data used in the block validation process.
Figure courtesy of [5].

VI. RELATION TO SLAM BACK-ENDS

The use of sparse linear algebra and matrix decomposition
methods have been introduced in robotics only recently [31],
[21], [71], [22]. In contrast to that, the geodetic scholars were
using LU, QR and Cholesky decomposition for a long time—
Cholesky decomposition was actually developed for geodetic
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mapping purposes. This section aims at highlighting some
of the similarities between the methods developed by both
communities.

A. Hierarchical and Sub-Map-Based SLAM Methods

Grisetti et al. [27] propose an efficient hierarchical multi-
level method for optimizing pose-graphs. The higher the level
in the hierarchy, the smaller the pose-graph. At each level,
a subgraph from a lower level is represented by a single
node on the higher level. The optimization is primarily carried
out at the higher levels and only propagated down to the
lower level if there is a significant update to the pose of a
node. Each edge in the higher level is computed via a new
deduced virtual measurement, which is created after a local
optimization. The gain in speed by this method results from
the fact that computationally expensive optimization is only
performed when the pose of a node in the coarse representation
gets affected more than a certain threshold (which was chosen
as 5 cm or 0.05◦ by the authors). There exists also a extension
to general SLAM graphs and bundle adjustment problems [16].

The virtual measurements created by Grisetti et al. are
similar in idea to those in the Bowie method explained in
Section V-C. The Bowie method creates a two-level hierarchy
instead of the multiple levels as in [27]. Both methods use a
single node from a dense sub-graph in the higher, coarser level
and add a virtual deduced measurement between the smaller
new problem instances. A difference is that given a geodetic
network consisting of sections, each edge in the Bowie method
represents a sub-graph whereas in the hierarchical approach of
Grisetti et al., only nodes represent sub-graphs. Furthermore,
Grisetti et al. compute the uncertainty of a virtual constraint
explicitly.

Also Ni et al. propose back-ends, which divide the original
problem into multiple smaller sub problems [42], [43]. These
smaller problems are then optimized in parallel. The first
approach, [42], partitions the problem into a single level of
sub-maps, while [43] partitions each map recursively multiple
times. The speed-up is mainly due to caching the linearization
result of each subgraph. In both methods, all nodes in a
subgraph are expressed with respect to a single base node.
This allows for efficiently re-using the linearization of the
constraints within each subgraph. This insight results in a
reduction of the total computation time. Boundary nodes
and constraints connecting multiple subgraphs need to be
recomputed at each iteration, while results for nodes within
a subgraph can be reused. The methods of Ni et al. would
result in a batch solution if each non-linear constraint within
a subgraph is re-linearized at every iteration, but they show
experimentally that by not doing so, a high speed-up in
optimization time is achieved at the expense of very small
errors.

The sub-maps methods proposed by Ni et al. show many
similarities to Helmert’s approach of partitioning the triangle
nets into subnets. The idea of anchoring sub-maps in [43] has
a similar motivation as Bowie’s idea for anchoring junctions
and moving them as a whole by shifting the anchor nodes
and not re-optimizing each subgraph. Krauthausen et at. prove

that approximately planar SLAM graphs can be optimized in
O(n1.5) by using the nested dissection reordering [72]. The
nested-dissection algorithm, which is at the heart of [43] and
[72], is similar to Helmert’s strategy of recursively partitioning
a planar triangulation net [68]. Furthermore, the out-of-core
parallel Cholesky decomposition-based non-linear solver for
geodetic mapping proposed by Avila and Tomlin in 1979 [67]
uses Helmert blocking and is thus strongly connected to [43].
It should, however, be noted that the geodetic community was
generating the partitioning manually with domain knowledge
and that the triangle-nets have a simpler and more planar
structure than typical SLAM graphs.

B. Stochastic Methods

Olson et al. propose stochastic gradient descent for solving
pose-graphs with a bad initialization [36]. They re-parametrize
the constraints from a global pose to a relative pose represen-
tation. In the global pose, all positional nodes are represented
with global coordinates in the world frame, whereas in the
relative pose representation, each pose is represented with
respect to its previous pose in the odometry chain. This allows
the authors to distribute the errors of each constraint within
the loop induced by it. Grisetti et al. [37], [73] improve
this approach by using a tree parameterization based on a
spanning tree instead of the odometry chain. The basic idea
of both approaches is to stochastically select a constraint and
move nodes based on the parameterization to reduce the error
induced by the constraint. A learning rate controls the step
size and is gradually decreased to prevent oscillations. Both
approaches also assume spherical covariances and intelligent
data-structures to efficiently distribute the errors. These meth-
ods are also capable of online and incremental approaches by
increasing the learning rate for active areas [38], [74], [39].

A major intuition of using stochastic methods is equating
error around a loop to zero. This is somewhat similar to
the motivation for the modified Bowie method, where one
virtual equation is set-up for each loop in the sparse mesh and
the error around every loop is equated to zero. Examples of
distributing errors around loops has also been explored in the
“zero-sum property” of [15] and “trajectory bending” of [75].

The Indian method of 1938 [62] described in Section V-F
has a similar motivation to the stochastic methods described
above. In the Indian method, an initial spanning tree is manu-
ally chosen, which is a similar initialization strategy than the
one of Grisetti et al. The Indian method as a whole, however,
is rather informal and distributes the errors manually in a trial
and error fashion. In contrast to that, Olson et al. and Grisetti
et al. minimize the error using stochastic gradient descent and
provide a more formal treatment of the approach.

C. Robust Methods for Outlier Rejection

For quite a while, SLAM back-ends suffered from data
association failures that result in wrong constraints between
nodes in the graph. Recently, a set of different approaches have
been proposed that are robust even if a substantial number of
constraints are outliers.
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Latif et al. [13] propose RRR, which is a robust SLAM
back-end, capable of rejecting false constraints. RRR first
clusters mutually consistent and topological related constraints
together. Each cluster is checked for intra-cluster consistency
by comparing the residual of each constraint with a theoretical
bound. Constraints that do not satisfy the bound are removed.
This approach is similar to the block validation technique used
for NAD 83. The individual blocks in block validation and
the clusters in RRR conceptually represent similar sub-graphs.
The blocks are geographical partitions but are actually a set
of nodes and constraints similar to what clusters represent in
RRR. Again, it should be noted that the triangular networks of
the geodetic community have a simpler structure than SLAM
graphs and thus the verification step is easier to conduct.

The dynamic covariance scaling (DCS) approach by Agar-
wal et al. [14] is a robust back-end that is able to reject
outliers by scaling the covariance of the outlier constraint.
DCS can be formulated as a generalization of switchable
constraints [12], another state-of-the-art back-end for robust
operation in the presence of outliers. In DCS, the covariance
matrix of constraints with large residuals is scaled such that
the error stays within a certain bound. This is related to the
“doubling of standard deviation of each constraint” strategy
used in [5]. It is, however, not clear if and how the scaling in
NAD 83 was modified between different iterations.

D. Linear SLAM

A good initial guess is critical for iterative non-linear
methods to converge to the correct solution. For providing
a good initialization, Carlone et al. [15] propose a linear
approximation for planar pose-graphs. Their approach yields
an approximate solution to the non-linear problem without any
initial guess and thus can be used as a high quality initial
guess for state-of-the-art back-ends. Carlone et al. formulate
the SLAM problem in terms of graph-embedding and suggest
to partition the system of equations into:

AT
2 ρ = R(θ)∆l (17)

AT
1 θ = δ. (18)

Here, θ contains angular unknowns and ρ represents the
positional unknowns. The terms A1 and A2 are their respective
coefficient matrices, ∆l and δ are the corresponding constraint
residuals, and R(θ) is the stacked rotation matrix. Eq. 18 is
solved first and the computed value of θ is used for solving
Eq. 17. The authors provide both, a theoretical proof and real-
world examples for the algorithm in [15].

Related to Linear SLAM, Boltz was reordering the equa-
tions in Eq. 15 and eliminating angular unknowns first. His
motivation was to cache matrix inversions for a faster human
look-up, but geodetics used it not only for gains in speed
but also because it “did not bias the solution towards any
particular unknown like Gaussian elimination” [61]. In our
geodetic survey, we did not find any proof for this statement,
but as both approaches share similarities, we suspect that this
statement is related to the properties of Linear SLAM. The
theoretical justification of [15] also holds in the case of Boltz’
reordering of eliminating angular constraints first.

E. Dense Sub-Blocks

The manuscript [5] describing NAD 83 offers several inter-
esting aspects ranging from database management to memory
and cache-friendly algorithms. During the project, engineers
used punch card machines—rather inconvenient and cumber-
some tools for solving large matrix problems compared to
modern computers. Physical file management system and effi-
cient card storage are reminiscent of sophisticated techniques
used in modern software. We have decided to not discuss all
topics in detail here but in essence, the NAD 83 engineers
were arranging data similar to the block matrix representations.
The punch cards describing the data comprising station posi-
tions and constraints were also physically stored as low-level
Helmert Blocks. All punch cards corresponding to a single
block were stored together for faster retrieval.

Such dense sub-blocks are central elements in some of
the fastest SLAM back-ends. Konolige et al. [10] describes
a 2D SLAM implementation where the computation time is
significantly reduced by storing each Jacobian as a 3×3 block
matrix. Kümmerle et al. [71] generalize the block storage and
indexing strategy for 6 × 6 and other types of feature nodes.
Finally, most modern graph-based SLAM implementations
use the Cholesky decomposition algorithm from the Suite-
Sparse library by Davis [76]. The fastest super-nodal Cholesky
decomposition routine, CHOLMOD, also exploits dense sub-
blocks [77].

F. Further Remarks

As an additional note, the Cholesky decomposition, which
is commonly used in error minimization, was developed in the
early 1900s by André-Louis Cholesky for geodesy and map
building while he was in the French Geodetic section. The
χ2 distribution was also published by Helmert in [78]. This is
further elaborated in [79] and details with respect to Pearson’s
report can be found in Sec. 7.3 of [80].

VII. DISCUSSION

Although there are similarities between the problems of both
communities, it is also important to highlight the additional
challenges that autonomous robots, which rely on working
SLAM solutions, face compared to geodetic mapping.

First, SLAM systems are completely autonomous while
geodetic mapping inherently involves humans at all levels
of the process. It is difficult for automated front-end data-
association methods to distinguish between visually similar
but physically different places and this is likely to occur,
for example, in large man-made buildings. Perceptual aliasing
creates false constraints, which often introduces errors in the
localization and map building process.

Second, the quality of the initial guess is often different. The
initial guess that is available for geodetic triangle networks
are typically substantially better than the pose initializations
of typical wheeled robots using odometry as well as flying or
walking robots. A good initial guess substantially simplifies
and even enables the use of polygon filling and other types of
approximations.
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(a) Intel dataset with 875 robot positions and 15675 constraints (left) and a
zoomed in section (right). The robot positions are shown as blue triangles and
constraints in red. The zoomed in section of the bottom left portion intuitively
shows the non-planarity of a SLAM graph.

(b) Triangle net for ED87 (left) and a zoomed-in section for Italy (right).
The constraints covering Italy intuitively show that triangle nets used for
geodesy were almost planar. Figure courtesy of [47].

Fig. 17. Intuitive illustration of planarity of geodetic triangle net compared
to a SLAM graph.

Third, the geodetic triangle networks are almost planar,
while most SLAM graphs are not. This can be intuitively
seen from Figure 17. Additionally Eiffel-tower type landmarks
which connect all poses, create highly non-planar SLAM
graphs [81]. Helmert’s simple partitioning scheme of seg-
menting along latitudes and longitudes works for Geodetic
networks because the graphs are almost planar. In [72],
the authors prove that planar or approximately planar SLAM
graphs can be optimized in O(n1.5) by using the nested
dissection reordering. Comparable results can be expected for
Helmert’s Blocking strategy as both are rather similar [67].
The way most modern SLAM methods work, however, leads
to a highly non-planar graph with a high crossing number [82].

VIII. CONCLUSION

This paper provides a survey of geodetic mapping methods
and aims at providing a geodetic perspective on SLAM. We
showed that both fields share similarities when it comes to
the error minimization task: maps are large, computational
resources are limited and incremental methods are required,
non-linear constraints require iterative procedures and data
associations is erroneous. There are, however, also differences:
geodetic triangular nets have a simpler structure, which can
be exploited in the optimization, methods for robotics must
be completely autonomous while the geodetic surveys always
have humans in the loop, and often the geodetic community
had a better initial configuration to begin with.

Besides the elaborated similarities and differences between

geodetic mapping and SLAM, we surveyed several core tech-
niques developed by the geodetic community and related them
to state-of-the-art SLAM methods. The central motivation for
this paper is to connect both fields and to enable future syner-
gies among them. While surveying the geodetic methods, we
experienced strong respect towards the geodetic scholars. Their
achievements, especially given their lack of computational
resources, are outstanding.

SLAM researchers have often gone back to the graph theory
and sparse linear algebra community for efficient algorithms. It
is probably worth to also look into the geodetic mapping liter-
ature given that they addressed large-scale error minimization
and developed highly innovative solutions to solve them. Ac-
tually, several research activities by linear algebra researchers
have been motivated by the large problem instances of geodetic
mapping.

There might still be more methods in geodetic mapping
that are unknown outside their community but could inspire
other fields. Interested readers should begin with the excellent
document by Schwarz on the history of North American
Datum of 1983 [5].
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