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Abstract— Most robots need the ability to communicate with
a base station or with an operator during their mission. Tele-
operated and semi-autonomous robots typically communicate
continuously through a network connection with an operator.
Transmitting raw sensor data over a low bandwidth network
such as wireless or HSDPA, however, is problematic as the
stream of sensor data is often large. In this paper, we present
a method that exploits H.264 compression to reduce the size
of range data streams from sensors such as the Kinect camera
or the Velodyne 3D laser scanner. We developed a practical
and effective solution that exploits the state of the art in video
compression to produce high-quality results. Our method is easy
to implement and can have practical impact for researchers
building robots for the real world. We implemented and
thoroughly tested our approach using a large number of range
data streams. Furthermore, we analyzed the impact of data
compression on the accuracy and size of the transmitted data.
We show that even a highly compressed stream of depth images
can be used with dense mapping techniques such as KinFu for
building environment models.

I. INTRODUCTION

A key application for mobile robots is their use in haz-
ardous or difficult to access environments This includes
search and rescue missions, exploration of unknown envi-
ronments, digitizing archeological sites, or inspections of
contaminated areas. Depending on the application scenario
and the availability of humans in the loop, such robots
are either remote controlled, semi-autonomous, or fully au-
tonomous. For tele-operated and semi-autonomous operation,
it is essential that the robot can communicate with a human
operator and can transmit at least parts of the acquired sensor
data. Users of such systems typically need to see what the
platform is currently doing and what it is sensing, i.e., a local
environment model or a subset of the acquired camera and
depth images. To achieve that, the data must be transferred
over a relatively slow network link such as WiFi or HSDPA.
Besides the aspect of user intervention, transmitting sensor
data to a remote base station for performing computations
off-board can also be advantageous for fully autonomous
robots and resource-constrained systems such as UAVs or
humanoids. A central problem in real-world environments is
that the network connection is not fast enough to transfer
the full stream of sensor data to a remote computer. For
example, the popular Kinect camera generates a data stream
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Fig. 1. Remotely operated robot in an underground catacomb. The robot
streams Kinect depth data for building a map to a remote operator.

of RBG and depth images of around 45 MB/s, which exceeds
the bandwidth limits of most networks.

In this paper, we address the problem of effectively
transmitting range data from a typical depth sensor such as a
Kinect camera or a Velodyne 3D laser scanner through a slow
network connection. Our solution builds on top of modern
video codecs such as H.264 to transmit a compressed version
of the original data stream that requires only a fraction of
the bandwidth. Exploiting existing video compressors has
several advantages: it exploits years of research on video
compression, it is highly effective as it leverages spatiotem-
poral relations in the data, it is easy to implement given
existing libraries, and H.264 is supported by a large variety
of devices. Our solution is able to deal with data streams in
which the individual sample is described by more than 8 bit
and proposes a range-based signal demultiplexing to reduce
the effects of compression artifacts.

We present an extensive experimental evaluation in which
we show that our solution is effective for transmitting depth
streams. Our evaluation suggests that the approximation
error, which is introduced by the lossy compression, is
acceptable in the sense that dense mapping systems [13], [11]
can build environment models from this data. This is useful
for relaying depth data from semi- or fully autonomous ex-
ploration robots as the one shown in Figure 1. Here, our robot
explores an inaccessible underground catacomb while relying
on Kinect range data that is streamed to a remote machine.
The software is released as open source and it is available
at http://www.ipb.uni-bonn.de/software.



Fig. 2. A depth image built from a single rotation of a Velodyne scan

II. RELATED WORK

The problem of compressing data for network transmission
has a long history. In the context of robotics, we mainly
find two different classes of approaches: first, techniques
that transmit models such as a 3D environment map over
the network and second, methods that transmit the sensor
data itself. In this paper, we address the second class of
problems, i.e., transmitting range data from a range sensor
over a network connection. A straightforward solution is to
transform the range data into a depth image and transmit
it using video codecs. Already in 2001, Krishnamurthy et
al. [6] pointed out that a straightforward application of image
compression algorithms to depth images does not lead to
good results.

Chai et al. [1] address the topic of depth image-based
rendering for 3DTV and propose a mesh-based 3D represen-
tation of the scene. They extend an algorithm previously used
by Lindstrom et al. [8] for real-time height fields rendering.
Schnabel and Klein [14] as well as Hornung et al. [3] explore
the compression of point clouds based on octrees. These
approaches build local models and are especially effective for
large free-space areas. Related to that, Morvan et al. [10] use
a quadtree-based decomposition of single depth images to
compress depth data. Merry et al. [9] propose a solution for
dense and regular point clouds that is based on a compression
using a spanning tree representation. Kammerl et al. [4]
extend the method of Schnabel and Klein [14] to compress
the octrees using an algorithm that expresses the differences
of the current point could with respect to the previous one.

In 2006, Oh and Ho [12] investigated means to achieve
faster encoding with respect to H.264 when encoding depth
images by estimating the motion vectors from the RGB
images associated to the depth frame. This approach requires
RGB and depth data and cannot be used for range data
from 3D laser scanners. To improve the compression results
of H.264 on depth data, Lai et al. [7] propose to use
de-artifacting filters in combination with H.264 encoding.
They show that this approach avoids artifacts and leads to
an improved peak-signal-to-noise ratio. In 2013, Karpinsky
and Zhang [5] propose a close-to-realtime approach for
3D geometry video compression exploiting the holoimage
technique [2] for 3D models and streaming the reduced 2D
image through H.264.

In this paper, we address the problem of effectively stream-
ing range data over low bandwidth networks. In contrast to
several other approaches, our method does not rely on local
models, maps, or voxels and operates on the sensor data of
typical range sensors used in robotics, i.e., depth cameras as
well as 3D laser scanners.

III. COMPRESSING RANGE DATA STREAMS USING H.264
In this paper, we operate on the range data as it is gener-

ated by a depth camera, a 3D laser scanner, or other similar
range finder devices. We encode each scan as a depth image,
see Figure 2 for an example. This allows us to leverage
existing video codecs to obtain a high quality compressed
depth image stream. Video codecs such as H.264 are only
effective if the individual images are part of a continuous
image stream, i.e., there is a spatiotemporal relation between
the images and the stream is not a random collection of
images. This, however, is the case for most data streams that
are obtained in the context of robotics.

A. Using H.264 on range data
Our approach makes use of a H.264 video encoding

technique. This choice has the following advantages:
• The H.264 compression level is adjustable and allows

for finding a good trade-off between bandwidth limita-
tions and desired accuracy.

• The codec exploits the spatiotemporal relations in the
data, which are often found in robotic applications
including mapping, exploration, as well as search and
rescue missions.

• H.264 is a wide-spread technology. Nowadays even
mobile phones and inexpensive hardware solutions can
natively compress high-resolution streams using this
codec.

For each image, the standard H.264 video compression
algorithm consists of three main steps. First, it tessellates
the image in blocks. Second, it computes for each block a
Discrete Cosine Transformation. Third, it applies a low-pass
filter to the transformed block. The higher the compression
level of the codec, the lower the cut-off frequency. An effect
of the low-pass filter is that sharp edges are often strongly
corrupted. After performing these three steps, the continuous
nature of the data stream is exploited by storing differences
with respect to other (key)frames.

The H.264 codec is tailored to compress RGB videos
so that the resulting video artifacts are not perceivable by
the human eye. As a conseguence, this does not necessarily
minimize the residual error between the compressed image
and the original one. For example, this codec generates
small compression artifacts in smooth and similarly colored
areas and strong artifacts in areas with moving edges. These
artifacts result in errors in the compressed data stream. For
depth data, this means that smooth surfaces show comparably
few errors in the reconstructed depth images, whereas edges
are often strongly affected by the compression artifacts. As
a result of that, the value of a pixel in the compressed depth
image can be substantially different from the original one.



A second problem of RGB-native video codes for range
data compression is the number of bits per pixel that the
codec supports. There exist high-definition profiles in the
H.264 standard that support more than 8 bit per pixel. Most
implementations, however, support only 8 bit per pixel and
this value cannot be changed easily. Depth data from a typical
range sensor, however, requires more than 8 bit to encode the
distance information, e.g., 11 bit for the Kinect depth image
and 16 bit for a Velodyne laser range scanner.

As a result of these two issues, the straightforward ap-
plication of the H.264 codec for depth image compression
leads to data streams with substantial errors in the range
data. Therefore, we propose a solution that makes use of
range-demultiplexing of the original data stream before com-
pressing it with H.264. We subdivide the stream in multiple
smaller ones, each describing a selected range of depth data.
This leads to substantially reduced artifacts and, at the same
time, keeps the size of the stream small.

B. Demultiplexing and compressing range data streams

Our approach starts with the range data from a range sen-
sor. Each range scan is transformed to a depth image (some
sensors such as the Kinect provide the depth image directly).
We demux the depth image in multiple channels, compress
each channel individually using H.264, and transmit the
created H.264 streams. At the receiver’s end the streams
are decompressed and recomposed into a single depth image
stream.

Our range-demuxing strategy works by assigning a se-
lected range of depth data to each demuxed channel. As a
result, each channel contains only range data within a certain
depth interval. Let R be the maximum range of the sensor,
J the number of range intervals, and B the number of bits
that H.264 supports per channel, i.e., typically B = 8.

Without loss of generality, we consider a uniform depth
subdivision. The metric resolution per unit rc of each chan-
nel c is computed as

rc =
R

J · 2B
. (1)

Thus, rc represents the discretization of the range data. Let
D be the original depth image. For the j-th channel cj , we
select all range measurements in the interval

Hj = [D · j,D · (j + 1))

= {x ∈ D |D · j ≤ x < D · (j + 1)}. (2)

This leads to the channel image Dj , which is defined as

Dj =
f(D,Hj)−D · j

D
· 2B , (3)

where f(·) returns an image with pixels having depth in the
interval Hj and with all other pixels equal to zero. Note
that all elements of Dj take values between 0 and 2B . In
the remainder of this paper, we call the individual depth
images Dj of a demuxed channel a “slice”. For further
processing, we assume the Dj to be 8 bit images that are
compressed with the H.264 codec.

Depending on the properties of the sensor and on the
requirements of the application, the range intervals of the
individual channels can be designed to have non-uniform
ranges. This allows for using a high resolution to capture
specific depth intervals and coarser ones for areas where high
accuracy is not required or not available.

In addition to the set of slices Dj with j ∈ {1, . . . , J},
we compute an index matrix K with elements in {0, . . . , J}
indicating for each pixel, which slice is the one that contains
the valid depth information. An index of zero is used to
indicate a missing measurement. The use of K is important
as the decoder needs to know which slices Dj to use
for reconstructing the range measurements on a per pixel
basis. Thus, the matrix K must be transmitted with lossless
compression within H.264. Although this may sound like a
large overhead, the exploitation of the temporal dependency
between consecutive index matrices K leads to high com-
pression rates.

Note that the overall number of bits used to model a
range measurement in the input is typically smaller than
the one in the raw demuxed depth image. Nevertheless, the
H.264 codec typically compresses the demuxed stream by
exploiting the spatiotemporal correlation of the data. As a
result, the encoded demuxed stream is substantially smaller
than the input.

In sum, the advantage of the demuxing approach is
twofold. First, it allows us to encode data streams using an
arbitrary number of bits per measurement. Second, it limits
the impact of compression artifacts in the compressed data
stream thanks to the normalization in Eq. (3).

IV. EXPERIMENTS

Our experiments are designed to show that the proposed
approach is an effective mean for compressing range data
streams. First, we evaluate the accuracy under lossy com-
pression. Second, we evaluate the bandwidth requirements at
different compression levels. Finally, we evaluate the impact
that the compression has on mapping algorithms such as
KinFu [13].

A. Setup

For our evaluation, we use 15 real world robotic datasets.
Except for one dataset, all are publicly available through [16]
and [15]. The non-publicly available dataset consists of
Kinect depth data that we recorded in a catacomb in Rome
during an archeological digitization experiment with our
robot shown in Figure 1. Overall, the datasets include far-
range data as well as close range recordings, moving sensors,
static sensors and moving people.

For the H.264 implementation, we rely on the x264 codec
by VideoLAN [17]. For varying the compression level of
the video codec, we change the quality profile parameter qp,
which takes integer values between 0 (lossless compression)
and 69 (maximum compression).

The key parameter of our range-demuxing approach is J ,
the number of slices. In our experiments, we mainly use two
configurations with J = 6 and J = 24 slices to which we
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Fig. 3. Error evaluation for our method on Kinect range data on the 15 real world datasets. Histograms resulting from the “coarse”(first row) and
“fine”(second row) configurations. From left to right, histograms correspond to the quality profiles 0, 30, 50, 60, 69. The error is measured in cm and each
bin corresponds to 2 cm. We grouped all errors larger than 18 cm into the last bin.
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Fig. 4. Error evaluation of the baseline approach using H.264 on a 8 bit channel. Compared to our approach, the distributions show large errors. In the
plots, the error is shown in cm and each bin corresponds to 2 cm. We grouped all errors larger than 18 cm into the last bin.

refer to as “coarse” and “fine”. This corresponds to a depth
resolutions between 0.008m and 0.002m at a maximum
sensor range of 12m.

B. Quality of the compressed data stream

The first set of experiments is designed to evaluate the
error between a compressed data stream and the original
input. We define the error as the absolute difference of the
individual range measurements.

We analyze the error for different parameters using over
14,000 depth images from all 15 datasets and present the
error distributions by using histograms. Each bin of those
histograms depicted in Figure 3 spans a range of 2 cm. A
plot with a high peak in the first bin indicates that most
measurements are affected by a small or zero error. The five
columns of Figure 3 summarize the results for the quality
profiles 0, 30, 50, 60, and 69. The rows show the result for
the settings “coarse” (top) and “fine” (bottom). The quality
profile 69 (maximum compression) typically leads to strong

compression artifacts and the data is, at least from our point
of view, hardly usable in robotic applications. For quality
profiles below 60, the accuracy increases substantially and
the corresponding histograms are peaked at the first bin.
The quality profile 0 corresponds to a lossless compression
of the data stream. As expected, smaller slices and thus
finer discretization of the depth measurements yield lower
errors. Note that the errors of the images reconstructed
using the “fine” resolution with the quality profile 50 appear
to be similar to the ones reconstructed using the “coarse”
resolution and the quality profile 30.

Additionally, we compared our method to a baseline that
consists of rescaling the 11 bit input stream of the Kinect
to 8 bit for applying standard H.264 compression. This is
equivalent to setting J = 1 in our approach. The results
are shown in Figure 4. Compared to our approach, this
strategy leads to substantially increased errors and the error
histograms are not peaked at the smallest bin, even for low
quality profile values.
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Fig. 5. Pixel error evaluation for our method on Velodyne range data.
Every bin spans over 0.20m. The quality profiles used are: 0, 30, 50 and
60. Note the resemblance with the histograms of the second row of Figure 3.

To illustrate the wide applicability of our approach, we
compressed the range data stream of a Velodyne 3D lidar.
The Velodyne consists of an array of lasers arranged on a
rotating column. We generate a depth image by collecting all
the laser measurements of a single rotation. A example depth
image is shown in Figure 2. The maximum range is 80m
and we use J = 16 slices, which leads to a depth resolution
of approx. 0.02m. No changes are needed in our algorithm.
The results are shown in Figure 5 and show a similar trend
to those obtained with the Kinect sensor.

C. Bandwidth requirements

In this experiment, we evaluate the bandwidth require-
ments of our streaming method on the Kinect datasets.
Figure 6 shows the average bitrate at different compression
levels. We evaluate the performance of the “coarse” and
“fine” slice setup. With our approach, all quality profiles,
even the lossless one, allow for streaming on a standard
802.11g WiFi connection or a HSDPA cellular network at full
frame rate. Note that in all settings, we find large bandwidth
savings with respect to the original, uncompressed Kinect
depth data stream.

Using the “fine” slice setup (blue curve in Figure 6) results
in a bandwidth requirement that is approximately twice as
big compared to the “coarse” setup (red curve). The same
holds when comparing the lossless quality profiles with each
other (dashed curves).

Considering all the evaluated datasets, the average size
using a lossless compression is approx. 0.31 byte per pixel.
This is a large compression compared to the uncompressed
Kinect depth data of approx. 1.3 byte per pixel given that
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qp size size+4 slices
0 140 MB 141 MB
30 118 MB 118 MB
40 72 MB 72 MB
50 46 MB 46 MB
60 5.9 MB 6.1 MB
69 0.99 MB 1.2 MB

Fig. 7. Effect on the stream size when increasing the number of unused
slices for one dataset consisting of 1133 images.

there is no loss of information. Thus, our approach is twice
as effective as the method proposed by Kammerl et al. [4],
which achieves a compression of approx. 0.65 byte per pixel
at a similar resolution.

An interesting feature of using the H.264 compression in
our approach is that a slice containing no range information
is greatly compressed. In a small test, we added four empty
slices for each depth image and evaluated the effect on the
resulting size of the stream at different quality profiles. The
table in Figure 7 summarizes the results. As can be seen,
independent of the quality profile, the increase in bandwidth
is limited and always smaller than 1%.

D. Running Time

We evaluated the running time of our approach by using a
Intel i7-4770 cpu, constraining the process to use only 1 of
the 8 virtual cores. Figure 8 shows how the quality profiles
and slices affect average compression time. At the increase
of slice quantity (finer multiplexing) there is an increase of
computation time that can be traded-off with respect to lower
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Fig. 8. Evaluation of average compression time per frame.

quality profiles. This results in a running time up to 25Hz.
This can be greatly improved by exploiting multi-threading.

E. Using compressed data streams for dense mapping

In many robotic applications, the error in a single depth
measurement may not be critical. Many techniques in
robotics are founded on probabilistic methods and have been
designed to cope with sensor noise. One of those applica-
tions is mapping and exploration. Therefore, we qualitatively
evaluated the impact of the compression on a state-of-the-art,
dense mapping technique. For this, we employ KinFu [13] on
a tabletop dataset. Our aim is to illustrate that the resulting
maps can be interpreted by human operators even at high
compression rates. Figure 9, which depicts map examples
build with KinFu, suggests that even with a quality profile
of 50, most details of the scene are preserved.

V. CONCLUSIONS

Transmitting raw sensor data over a low bandwidth net-
work is problematic for tele-operated or semi-autonomous
robots as the sensor data is often large. In this paper, we
investigated how to exploit H.264 compression to reduce
the size of a range data stream from sensors such as a
Kinect camera or a Velodyne 3D lidar to transmit it through
a low bandwidth network. We presented a practical and
effective solution that exploits the state of the art in video
compression, can handle streams with more than 8 bit, re-
duces the impact of the compression artifacts, and is easy
to implement given existing H.264 libraries. We conducted
an extensive and thorough experimental evaluation using
large amounts of range data streams by analyzing bandwidth,
time and accuracy. Additionally, we showed that even a
highly compressed stream can be used with a dense mapping
technique such as KinFu for building environment models.
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