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Abstract. Point cloud registration is an essential part for many robotics
applications and this problem is usually addressed using some of the ex-
isting variants of the Iterative Closest Point (ICP) algorithm. In this
paper we propose a novel variant of the ICP objective function which is
minimized while searching for the registration. We show how this new
function, which relies not only on the point distance, but also on the
difference between surface normals or surface tangents, improves the reg-
istration process. Experiments are performed on synthetic data and real
standard benchmark datasets, showing that our approach outperforms
other state of the art techniques in terms of convergence speed and ro-
bustness.
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1 Introduction

Registering two point clouds is a building block of many robot applications such
as simultaneous localization and mapping (SLAM), object recognition and de-
tection, augmented reality and many others. This problem is commonly solved
by variants of the Iterative Closest Point (ICP) algorithm proposed by Besl and
McKay [1]. ICP tries to find a transformation that minimizes the distance of
a set of corresponding points in the two clouds. At each iteration ICP refines
the estimate of the transformation by alternating a search and an optimization
routine. Given the current transform, the search looks for corresponding points
in the two clouds. The optimization computes the transformation that results
in the minimum distance between the corresponding points found by the search
step. ICP is a very successful scheme and several variants of increasing perfor-
mances have been proposed. If the correspondences are free from outliers and
the measurements are affected by low noise, the transformation can be found
directly by applying the Horn formula [3].

The whole concept at the base of ICP is that, at each iteration, an improved
transformation with respect to the previous one is found. Such a transformation
represents the new initial guess for the heuristic used to find the correspondences
and allows to determine better associations at the next iteration. Accordingly, re-
searchers focused on seeking for heuristics that provide “good” correspondences.



The original idea of picking up the closest points [1] has been progressively
refined to consider features, curvature and other characteristics of the points.
Pomerlau et al. [5] provided an excellent overview on these different variants.

ICP and its variants require multiple iterations because it does not exist
an heuristic that provides the exact correspondences. Since the optimization
requires linear time in the number of correspondences, the bottleneck of the
computation is represented by the heuristic that has to compute them.

The main drawback of ICP in its original formulation is the assumption that
the points in the two surfaces are exactly the same. This is clearly not true
as the point clouds are obtained by sampling a set of points from the surface
observed by the sensor. If the observer position changes, the chances that two
points in the clouds are the same is very low. This is particularly evident at
low sampling resolutions. Aware of this aspect, Magnusson et al. [4] proposed
to approximate the surface with a set of Gaussians capturing the local statistics
of the surface in the neighborhood of a point. In that representation, called
the Normal Distrubution Transform (NDT), the correspondence search uses the
Mahalanobis distance instead of the Euclidean one and the optimization tries to
minimize it.

Similarly, Segal et al [6] proposed a refined version of ICP called Generalized
ICP (GICP). The core idea behind this algorithm is to account for the shape of
the surface which surrounds a point by approximating it with a planar patch.
In the optimization, two corresponding patches are aligned onto each other, ne-
glecting the error along their tangent direction. This can be straightforwardly
implemented by minimizing the Mahalanobis distance of corresponding points,
where the covariance matrix of a measurement is forced to have the shape of a
disk aligned with the sampled surface. Thanks to the better rejection of false
correspondences based on the surface normal cue and the more realistic objec-
tive function, NDT and GICP exhibit a substantially more stable convergence
behavior.

In fact, within ICP and its variants, the optimization and the correspondence
search are not independent. If the optimization is robust to outliers and exhibits
a smooth behavior, the chances that it finds a better solution at the subsequent
step increases. In this way an improvement is obtained at each iteration until
a good solution is found. Despite NDT and GICP, the authors are unaware of
other methods that improve the objective function.

Since point clouds are the effects of sampling a surface, the local character-
istics of this surface play a role in the optimization. From this point of view, the
objective function has to express some distance between surface samples, and the
optimization algorithm has to determine the optimal alignment between these
two set of samples. A surface sample, however, is not fully described just by 3D
points, but it requires additional cues like the surface normal, the curvature and,
potentially, the direction of the edge. Both NDT and GICP minimize a distance
between corresponding points, while they neglect additional cues that can indeed
play a role in determining the transformation and in rejecting outliers.



In this paper we propose a novel variant of the objective function which is
optimized while searching for the transformation. This function depends not only
on the relative point distance, but also on the difference between surface normals
or tangents in case the point lies on an edge. We provide an iterative form for the
optimization routine and we show through experiments performed on synthetic
data and standard benchmark datasets that our approach outperforms other
state of the art techniques, both in terms of convergence speed and robustness.

2 ICP

The problem of registering two point clouds consists in finding the rotation
and the translation that maximizes the overlap between the two clouds. More
formally, let Pr = {pr

1:Nr} and Pc = {pc
1:Nc} be the two set of points, we want to

find the transformation T∗ that minimizes the distance between corresponding
points in the two scenes:

T∗ = argmin
T

∑
C

χ2
ij︷ ︸︸ ︷(

pc
i −T⊕ pr

j

)T
Ωij

(
pc
i −T⊕ pr

j

)︸ ︷︷ ︸
eij(t)

. (1)

In Eq. 1 the symbols have the following meaning:

– T is the transform that is updated at each step i of the iterative algorithm
with the one found at iteration i− 1;

– Ωij is an information matrix that takes into account the noise properties of
the sensor or of the surface;

– C = {〈i, j〉1:M} is a set of correspondences between points in the two clouds.
〈i, j〉 ∈ C means that the point pr

j in the cloud Pr corresponds to the point
pc
i in the cloud Pc;

– eij(t) is the error function that computes the distance between the point
pc
i and the corresponding point pr

j in the other cloud after applying the
transformation T;

– χ2
ij is the Ωij-norm of the error eij(t);

– ⊕ is an operator that applies the transformation T to a point p. If we use
the homogeneous notation for transformations and points, ⊕ reduces to the
matrix-vector product.

In general, the correspondences between two point clouds are not known. How-
ever, in presence of a good approximation for the initial transform, they can
be “guessed” through some heuristic like nearest neighbour. In its most gen-
eral formulation, ICP iteratively refines an initial transform T by searching for
correspondences and finding the solution of Eq. 1. Such a new transformation
is then used in order to compute the new correspondences. Eq. 1 describes the
objective function used in the optimization of ICP, NDT and GICP. In the case
of ICP, Ωij is a diagonal matrix potentially scaled with a weight representing



the confidence about the correctness of a correspondence. NDT computes the
covariances Σi directly from the point cloud and it measures the distances by
using the mean of the Gaussians rather than the points as shown in Eq. 2.

T∗ = argmin
T

∑
C

(
µc
i −T⊕ pr

j

)T
Σ−1i

(
µc
i −T⊕ pr

j

)
. (2)

In GICP, Ωij = Σ−1i depends only on the ith point pc
i and its neighborhood.

The covariance Σi is enforced to have a disk shape and to lie on the surface from
where pc

i was sampled. In all cases, the difference pc
i−T⊕pr

j is a 3D vector that
measures the offset between two 3D points and the domain of the error function
is <3.

Since an increase in the dimensionality of the points makes the whole system
more observable, less correspondences are required for the optimization process.
By characterizing each point with other quantities to which a transform can
be applied, we can achieve such an increase in the dimensionality. We propose,
for this reason, the use of normals for quasi-planar regions and/or tangents for
regions of high curvature.

3 Extended ICP

In this section we describe the extension of the model of ICP in order to consider
also normals and tangents of the surface. We first illustrate the general concept
and, subsequently, we focus on the case in which a local surface has either a
normal, a tangent or none of the two. We conclude the section by sketching an
algorithm to carry on the optimization.

3.1 Extending the Measurements

Let ni be the normal of a point pi belonging to a certain surface, and τ i its
tangent if the point is part of an edge, we can then extend Eq. 1 as follows:

T∗ = argmin
T

∑
C

(
pc
i −T⊕ pr

j

)T
Ωp
ij

(
pc
i −T⊕ pr

j

)
+

∑
C

(
nc
i −T⊕ nr

j

)T
Ωn
ij

(
nc
i −T⊕ nr

j

)
+

∑
C

(
τ c
i −T⊕ τ r

j

)T
Ωτ
ij

(
τ c
i −T⊕ τ r

j

)
.

(3)

Here nc
i , nr

j and Ωn
ij represent respectively the normal of the point pc

i and
pr
i, and the information matrix of the correspondence among the two normals.

Similarly, τ c
i , τ

r
j and Ωτ

ij are the tangents and the information matrix of the
correspondence among the two tangents. We recall that, if T is a transformation
described by a rotation matrix R and a translation vector t, the ⊕ operator has
different definitions depending on its arguments:

T⊕ x =

{
R · x + t if x is a point

R · x if x is a tangent or a normal
(4)



A Mahalanobis distance between two point clouds can be measured by consider-
ing also the distances of corresponding normals and corresponding tangents after
applying the transformation T, as shown in Eq. 3.

By defining an extended point p̄ as a vector consisting of a point p, its normal
n and its tangent τ , we have a straightforward modification of the ⊕ operator
as

p̄ =
(
p, n, τ

)T
T⊕ p̄ =

(
Rp + t, Rn, Rτ

)T
. (5)

Eq. 3 can be, then, compactly rewritten in terms of extended points as

T∗ = argmin
T

∑
C

(
p̄c
i −T⊕ p̄r

j

)T
Ω̄ij

(
p̄c
i −T⊕ p̄r

j

)
, (6)

where Ω̄ij = diag(Ωp
ij , Ω

n
ij , Ω

τ
ij ) summarizes the contribution of Ωp

ij , Ωn
ij and

Ωτ
ij . The function diag(a1, . . . , ak ) stands for a diagonal matrix whose entries,

starting from the upper left corner, are a1, . . . , ak . If the point is not sampled
from a locally planar surface nor from an edge, a reasonable distance metric is
the Euclidean distance. For these points, we fall back to the ICP case, which
is enclosed in Eq. 6 by setting the information matrices of the tangent and the
normal to the null matrix: Ωn

ij = Ωτ
ij = 0.

When measuring the distance between two planar patches, it is reasonable
to neglect displacements along the tangent direction of the plane, while errors
along the normal direction should be more severely penalized. Additionally, the
normals of the two planes should be as close as possible. However, this constraint
cannot be enforced when using only 3D points. To obtain this behavior from the
error function, we can impose Ωp

ij
−1

to be a disc lying on the surface around pc
i ,

as done in [6]. Since the tangent is not defined in a planar patch, we set Ωτ
ij = 0.

Additionally, we set the covariance matrix Ωn
ij
−1 of the normal to have a shape

which is elongated in the normal direction. In this way the error between the
normals introduces a strong momentum that “forces” them to have the same
direction.

Conversely, when measuring the distance between two edges, it is reasonable
to slide them onto each other along the tangent direction. This behavior can
be obtained by enforcing Ωp

ij
−1

to have a prolonged shape and to lie along the
tangent direction. The tangents τ , instead, can be used to penalize two edges
not lying on the same direction by setting Ωτ

ij to have a shape which is elongated
in the direction of τ . Since an edge has no normal, Ωn

ij has to be set to 0.
The reader might notice that tangents and normals are mutually exclusive.

Since the contributions of the tangent and the normal components to the χ2
ij

have the same matrix dimensions, we can further simplify the extended point
p̄ by partitioning it into an affine part p, and in a linear part l. The former is
subject to translations and rotations, the latter only to the rotation. In this way
it is possible to reduce the dimension of the error function and to speed up the
calculation without loss of generality. We therefore define a compact form for an
extended point p̃ as

p̃ =
(
p, l

)T
T⊕ p̃ =

(
Rp + t, Rl

)T
. (7)



Table 1: This table summarizes the components of the information matrix used
in our algorithm, depending on the type of the structure around a point. Rni

and Rτi are two rotation matrices that bring the y axis respectively along the
direction of the normal ni, or the tangent τ i. ε is a small value (10−3 in our
experiments).

Case Ωp
ij Ωn

ij Ωτ
ij

planar Rnidiag( 1
ε
, 1, 1)RT

ni
Rnidiag( 1

ε
, 1
ε
, 1)RT

ni
0

edge Rτidiag( 1
ε
, 1
ε
, 1)RT

τi 0 Rτidiag( 1
ε
, 1
ε
, 1)RT

τi

none I 0 0

According to the new formalism, the objective function in Eq. 6 becomes

T∗ = argmin
T

∑
C

(
p̃c
i −T⊕ p̃r

j

)T
Ω̃ij

(
p̃c
i −T⊕ p̃r

j

)︸ ︷︷ ︸
ẽij(T)

, (8)

where Ω̃ij = diag(Ωp
ij , Ω

l
ij ), and the information matrices must be modified

according to Table 2

Table 2: This table summarizes the components of the information matrix for
our algorithm when using a reduced representation.

Case li Ωp
ij Ωl

ij

planar ni Rnidiag( 1
ε
, 1, 1)RT

ni
Rnidiag( 1

ε
, 1
ε
, 1)RT

ni

edge τ i Rτidiag( 1
ε
, 1
ε
, 1)RT

τi Rτidiag( 1
ε
, 1
ε
, 1)RT

τi

none 0 I 0

3.2 Carrying on the Optimization

In this section we present the procedure for the minimization described in Eq. 8
by using a strengthened least squares procedure. The input of this algorithm
are two sets of extended points p̃c

1:n and p̃c
1:m, a (noisy) set of candidate corre-

spondences C = 〈i, j〉1:M and the information matrix Ω̃ij , computed according
to Table 2. The aim of this procedure is to find the transform T∗ that minimizes
the following objective or cost function

T∗ = argmin
T

∑
C

ẽij (T)
T

Ω̃ij ẽij (T)︸ ︷︷ ︸
χ̃2
ij

. (9)

Each correspondence contributes to the overall cost function by the scalar term
χ̃2
ij .



As is well know, the minimizing T∗ of Eq. 9 can be found by iteratively
solving the following linear system:

H ·∆T = −b , (10)

where H =
∑
C JTijΩ̃ijJij is the Hessian matrix, b =

∑
C JTijΩ̃ij ẽij is the coeffi-

cient vector and Jij is the Jacobian of the error function. At each iteration we
compute an improved transform T′ from the previous transform T by using H
and b. By solving the linear system in Eq. 10 we determine a perturbation ∆T
which is applied to the previous transform T in order to reduce the error. The
transform T′ of the next iteration is thus computed as

T′ = ∆T⊕T′ . (11)

For readers interested in further details on the derivation of Eq. 10 we suggest
the work by Kümmerle et al. [2].

In our approach, a perturbation ∆T is defined as a vector composed of
two parts (∆t ∆q)T where ∆t = (∆tx ∆ty ∆tz) is a translation vector and
∆q = (∆qx ∆qy ∆qz) is the imaginary part of the normalized quaternion used
to represent an incremental rotation. If ∆t = 0, the perturbation is the 4-by-4
identity matrix. Under this parameterization, the Jacobian Jij with respect to
the local perturbation ∆T is computed as

Jij =
∂eij

(
∆T⊕T(n)

)
∂∆T

∣∣∣∣∣
∆T=0

=

(
−I 2[T⊕ pr

j ]×
0 2[T⊕ lrj ]×

)
, (12)

where [x]× is the cross product matrix of the vector x. In practice, by exploiting
the block structure and the sparsity of the Jacobian, it is possible to compute
efficiently the linear system in Eq. 10.

In order to be robust to the presence of outliers, which usually significantly
contribute to the error, the proposed scheme has to be further modified. To
reduce the contribution of these wrong terms, we scale the information matrix
of each correspondence whose χ2 is greater than an acceptance threshold by a
factor γij .

γij =

{
1 if χ2

ij < K
K
χ2 otherwise

(13)

Even if the correct correspondences are rejected at the beginning of the iterative
process, these will be considered again as the system converges towards a better
solution, since their χ2 will decrease.

In order to smooth the convergence it can be also added a damping factor
to the linear system in Eq. 10. In practice, ∆T is found by solving the damped
linear system (H+λI)∆T = −b, since it prevents the solution to take too large
steps that might be caused by nonlinearities or wrong correspondences.

3.3 Optimization Summary

In this subsection we wrap-up the ideas discussed above and we provide the
sketch of an iterative algorithm the optimization of Eq. 8. At each iteration our



algorithm computes an improved estimate T′ from the current estimate T by
executing the following steps:

1. Compute the information matrices Ω̃ij according to Table 2;
2. Compute the error vector ẽij as shown in Eq. 8;
3. Compute the Jacobian Jij according to Eq. 12;
4. Compute the χ̃2

ij as in Eq. 9 and the scaling factor γij from Eq. 13;
5. Compute a scaled version of the Hessian and of the coefficient vector as:

H =
∑
C
γijJ

T
ijΩ̃ijJij b =

∑
C
γijJ

T
ijΩ̃ij ẽij ; (14)

6. Solve the linear system of Eq. 10 to find an improved perturbation ∆T;
7. Compute the improved transformation T′ as in Eq. 11.

4 Experiments

We validated our approach both on real and synthetic data. The real world
experiments were conducted on publicly available benchmarking datasets, and
they show the performances of our optimization algorithm when included in a full
ICP system. The experiments on synthetic data, instead, allow to characterize
the behavior of our approach under different levels of sensor noise and outlier
ratios. Comparisons with NDT are not showed since it performs similarly to
GICP because they rely on analogous representations of the points.

4.1 Real World Experiments

For the real world experiments we used the benchmarking datasets by Stuerm et
al. [7]. Each dataset consists in a sequence of depth and RGB images acquired
with a calibrated RGBD camera in a reference scene. Note that even if our
approach is not restricted to the use of depth images, we decided to use these
datasets since they are labeled with the ground truth of the transformations. We
do not make use of the RGB channels.

In order to provide the input data to the algorithm illustrated in the previ-
ous section, we processed the point cloud P generated from each depth image
by extracting the local surface characteristics from the neighborhood of each
point pi . This process is performed by computing the parameters of a Gaussian
N (µi,Σi) and taking all points that lie within a fixed ball centered in pi, as

µi =
1

|Pi|
∑

pk∈Pi

pk Σi =
1

|Pi|
∑

pk∈Pi

(pk − µi)T (pk − µi) , (15)

where Pi is the set of all points in P that are closer than a fixed distance from
pi.

For determining if a point lies on a corner, an edge or a flat surface, we an-
alyze the eigenvalues of its covariance matrix Σi. If all eigenvalues have more



or less the same magnitude, we assume the point is on a corner. If one of the
eigenvalues is smaller with respect to the other two, we assume the point lies
on an edge. Finally, if one of the eigenvalues is smaller of some order of magni-
tude with respect to the others then we assume the point is on a planar patch.
This discrimination is necessary to compute the correct information matrices,
according to Table 2.

Given two clouds to be aligned, we search the correspondences using a line
of sight criterion over the depth images, we reject the correspondences whose
normals are too different and we execute one iteration of optimization. Notice
that ICP and GICP are special cases that can be captured by our algorithm just
by modifying the way in which the information matrices are computed. To focus
our analysis on the objective function we left all parts of the system unchanged,
including the correspondence selection. This represents an advantage for plain
ICP, since normally it does not rely on the normals in order to reject wrong
associations.

For each dataset, we incrementally aligned one frame to the previous one.
For each iteration of the alignment, we compared the difference between the
current solution and the ground truth. Each attempted alignment produced a
plot which shows the evolution of the rotational and translational error. For
compactness, we provide in this paper only the average error plots obtained by
averaging all errors of a run1. The reader who is interested in the individual plots
of each alignment, can find them at http://www.dis.uniroma1.it/~serafin/
publications/icp-augmented-measurements.

In order to measure the robustness of the alignments to wrong initial guesses
we performed several runs of the experiments by considering a frame each N .
Table 3 shows the average evolution of the rotational and the translational error
on three different datasets and at different frame skips.

The plotted results point out that our novel objective function in general
performs better than the other approaches, in particular in terms of convergence
speed. This is true especially for the rotational part of the error since it is in-
fluenced directly by the normals. Also in the case where no frame was skipped
(first column of Table 3), GICP required twice the number of iterations to con-
verge to the results of our approach. Moreover, ICP and GICP showed much less
robustness to frame skipping (second and third column of Table 3).

4.2 Experiments on Synthetic Data

We conducted experiments on synthetic data in order to assess the effects of
the inliers and of the sensor error on our optimization function. To this end we
generated a scene consisting of about 300k 3D points with normals and tangents.
Then, we computed the correct correspondences and ideal measurements and we
corrupted them. This process has been performed by injecting a variable fraction
of random outliers and perturbing the measurements by adding Gaussian noise

1 With run we denote all the alignment over a single dataset with a certain frame skip
rate.



Table 3: Average evolution of the translational and rotational error for three
different datasets at varying frame skip rates. Our approach is labeled “nicp” in
the captions of the images.
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Table 4: Average evolution of the translational and rotational error at different
outlier ratios and levels of noise affecting the measurements of the point (stan-
dard deviation, in meters) and the normals (standard deviation in degrees). Our
approach is labeled “nicp” in the captions of the images.
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to the points and normal estimates. For each setting we ran our approach, ICP
and GICP, and we plotted the evolution of the translational and rotational error.
The results are shown in Table 4.

Overall the experiments on synthetic data reflect the behavior of the real
world ones. Shortly, using additional information in the error function makes
the approach more robust and accelerates the convergence. This is particularly
true at high rates of outliers and sensor noise. Not surprisingly, instead, noise in
the normals lowers the performances. In the unrealistic scenario in which every
normal is affected by a 20◦ error at 90% of outliers the translational estimate
becomes less accurate than GICP, but it still converges to a reasonable solution.

5 Conclusions

In this paper we proposed a novel optimization function to register point clouds
using an ICP based algorithm that takes into account an augmented measure-
ment vector. Statistical comparative experiments on real and synthetic data
show that our approach performs better than other state of the art methods
both in terms of convergence speed and robustness. As expected, the normals
and the tangents of the surfaces showed an improvement in particular in the ro-
tational part of the error, while keeping the translational one similar to the other
approaches. A further enhancement could be obtained by finding an additional
measurement, related to the translation, to be considered in the minimization
of the cost function.
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