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Abstract. Learning maps from sensor data has been addressed since
more than two decades by Simultaneous Localization and Mapping (SLAM)
systems. Modern state-of-the-art SLAM approaches exhibit excellent per-
formances and are able to cope with environments having the scale of
a city. Usually these methods are entailed for on-line operation, requir-
ing the data to be acquired in a single run, which is not always easy
to obtain. To gather a single consistent map of a large environment we
therefore integrate data acquired in multiple runs. A possible solution
to this problem consists in merging different submaps. The literature
proposes several approaches for map merging, however very few of them
are able to operate with local maps affected by inconsistencies. These
methods seek to find the global arrangement of a set of rigid bodies,
that maximizes some overlapping criterion. In this paper, we present an
off-line technique for merging maps affected by residual errors into a sin-
gle consistent global map. Our method can be applied in combination
with existing map merging approaches, since it requires an initial guess
to operate. However, once this initial guess is provided, our method is
able to substantially lessen the residual error in the final map. We vali-
dated our approach on both real world and simulated datasets to refine
solutions of traditional map merging approaches.

1 Introduction

To autonomously execute complex tasks such as object delivery, house cleaning,
etc., mobile robots need to know their operating environment. This is usually
addressed by the Simultaneous Localization and Mapping (SLAM) problem, that
provides an estimate of the map and of the robot trajectory based on the robot
measurements.

SLAM has been object of research for more than two decades, and effective
solutions are available [21],[18],[9],[22],[16],[19]. The most common sensor used
to build robotic maps is the laser scanner, and existing approaches can effectively
be used to construct maps.

Regardless the technique employed, unless one uses some sort of absolute
sensor like a GPS, even the most effective methods might fail when the environ-
ment size becomes too big. Acquiring data for SLAM is an error-prone procedure
that requires attention to obtain satisfying results. Often the operator forgets to



(a) Consistent SLAM result of a first
mapping session

(b) Consistent SLAM result of a sec-
ond mapping round

(c) Standard map merging approach
on rigid bodies

(d) Our map merging approach
based on deformable bodies

Fig. 1: Motivating example of our approach. a), b) are the input graphs. The
global map shown in c) is affected by inconsistencies that are corrected by our
algorithm, as shown in d).

visit certain locations during data acquisition, or makes mistakes that challenge
the SLAM engine he is using (e.g. in a VisualSLAM session one might enter in
a room with poor light conditions).

Furthermore, typical SLAM systems require to operate on data gathered in
a single session. In other words they require a continuous trajectory to produce
a consistent map. If the environment changes, a new map needs to be computed
from new data. This results in the need of performing tedious and error prone
data acquisition sessions, each time the environment changes. A branch of liter-
ature addresses this problem by employing a team of robots, instead of a single
one, thus addressing the multi-robot SLAM problem. Alternatively one might
merge different local maps, acquired at different points in time. If the sole aim
is to get the map, the latter approach has obvious advantages, since it requires
less resources. Furthermore, in case the environment changes, new data have to
be acquired only in the changed portion, and be subsequently integrated in the
global map, after removing the outdated local map.

In this paper, we present a novel approach for merging partially consistent
maps. Typical map merging methods regard the maps as rigid bodies. A solu-
tion for map merging is a set of rigid transformations between the maps that
maximizes their consistent overlap. This has the obvious limitation of not deal-
ing with noise that might affect the local maps, and result in artifacts. This
error is always present and comes from the process used to estimate the input



maps. Conversely, our method operates on maps that are regarded as network of
springs and masses. We reduce the problem of merging two maps to the problem
of deforming two networks onto each other so that the residual energy of the
system is minimal. This corresponds to finding the configuration of the nodes
in the two networks that best preserves the original layout of the input maps.
Notice that the algorithm presented in this work is orthogonal to existing map
merging methods, and can be used to refine their solutions when the input maps
are affected by substantial error.

In case one uses the well known graph-based formulation of SLAM [8], such
a network is already provided as a pose graph. If the map is only available as
an occupancy grid or an image, we detail how to obtain a feasible pose graph
using Voronoi diagrams. By operating on graphs, our method benefits from a
reduced dimensionality, thus achieving efficient computation while preserving the
details of the input data. In Figure 1 we provide a motivating example for our
work. Fig, 1a) and 1b) are the SLAM results of two different mapping session,
performed in the same environment. We want to merge these maps into a single
one, possibly minimizing the error. Since each map is affected by residual errors,
combining them through a single rigid transformation propagates the error in the
global map, as shown in Fig. 1c). Instead, our approach, illustrated in Fig. 1d),
can achieve the goal by deforming the maps onto each other. This has the dual
effect of increasing the global consistency and of providing a consistent map for
navigation.

2 Related Work

State-of-the-art solutions to map merging are based on image registration tech-
niques. The partial maps are regarded as tiles of an image that should be com-
posed to form the global map. Erinc et al., [7], present an anytime merging
technique based on appearance maps, exploiting image similarity to find candi-
dates. Other approaches, [20], [5], are based on the spectral analysis of the Hough
transforms of the maps to merge. These methods aim at finding the position of
each local map with respect to the frame of the global map. A shortcoming of
this class of algorithms is their sensitivity to errors in the local maps. When these
local maps are subject to deformations, a set of pure rigid transformations is not
sufficient to compute a globally consistent map. Our method is orthogonal to
these approaches. In our current implementation we did not focus on providing
an initial alignment between the maps. This task can be solved by using one of
the methods above. Conversely, our approach seeks to maximize the consistency
of partially aligned maps, by warping them onto each other.

Map merging has been addressed also in the context of multi-robot SLAM.
Léon et al. proposed an approach based on particle filters. Their SLAM system
merges the maps of different robots by using the map estimated by one robot as
a measurement in the filter of another robot. Carlone et al., [4], present an ap-
proach using an estimation kernel to compute the relative transformation among
robots, without any a-priori knowledge. Leung et al., in [15], presented a decen-



tralized and distributed algorithm for cooperative SLAM, based on a set of rules
for the interchange of information. Cunningham et al., in [6], presented an ap-
proach called Decentralized Data Fusion (DDF) for the generation of a common
map called condensed map built after the marginalization of shared landmarks.
Lazaro et al., [14], presented a multi-robot SLAM approach based on condensed
measurements for the exchange of information among robots. These methods
are designed to operate within a full SLAM pipeline which requires to cope with
on-line aspects and to deal with communication issues. In the context of multi-
agent systems, Jennings et al. [12] presented a distributed mapping approach
that relies on an approximation of generalized Voronoi graphs, built during the
mapping procedure, and a simple distance-based metric for matching portions
of graph. Topological approaches address the problem framing it as a graph iso-
morphism, where one wants to find the set of equivalences between nodes and
edges of different subgraphs [3]. Along this line of research, Huang et al. [11],
presented an approach merging topological maps inspired to maximal common
subgraph problem. After building an initial set of matching hypotheses among
vertices of the graphs, these hypotheses are then discarded or confirmed consid-
ering geometric features of the environment. These methods, however require a
symbolic representation of the map, which is not provided by common SLAM
engines.

In summary, existing map merging methods aim at getting a global alignment
between local maps, but they are highly sensitive to noise in the input. Multi
robot SLAM systems are able to deal with this problem, but they are rather
complex and, in order to operate correctly, they require the data to be acquired
at the same time. In this paper we present an approach to generate a globally
consistent map out of noisy local maps.

3 Graph-Based Map Merging

Our approach is an off-line procedure for merging partially consistent local maps
having a limited overlap. The most suitable representation for our purpose is to
model the maps using graphs of measurements, as in the graph-based SLAM
formalization [8]. To align the maps into a globally consistent one, we iteratively
deform one of them onto the other, connecting robot poses, which belong to
different graphs, if the observations made at these nodes are similar.

The remainder of this section is organized as follows. In Section 3.1, we detail
our formalization of maps as deformable bodies. Since graphs of measurements
from SLAM are not always available, we propose a method for the extraction of
deformable networks out of occupancy grid maps in Section 3.2. Subsequently,
in Section 3.3, we address how the inter-graph data association is carried out.

3.1 Map Representation

According to the graph-based SLAM formalization, we represent a deformable
map as a graph of the form: G = 〈X , C〉. Each node x ∈ X is associated to



a robot pose in the environment. Each edge e = 〈xi,xj〉 ∈ C expresses spatial
relationships among poses, either from the robot motion or by correlating similar
observations of the environment. Since the nodes of this graph are robot poses,
they are also called pose graphs.

The energy or log likelihood of a configuration of nodes can be formulated
as follows. Let x = (x1, . . . ,xn)T be a vector of poses, where xi describes the
pose of node i. Let zij and Ωij be respectively the mean and the information
matrix of an edge between the node i and the node j. In energetic terms, zij
can be seen as equilibrium point of a spring with stiffness Ωij connecting the
masses located at xi and xj . If this edge represents a virtual measurement, its
equilibrium point is the transformation that makes the observation acquired
from i maximally overlap with the observation acquired from j. Let ẑij(xi,xj)
be the relative transformation between the two nodes. For a given configuration
the energy lij of a measurement zij is therefore

lij ∝ [zij − ẑij(xi,xj)]
TΩij [zij − ẑij(xi,xj)]. (1)

Let e(xi,xj , zij) be a function that computes the distance from the two poses
to the equilibrium point. For simplicity of notation, we will encode the indices
of the measurement in the indices of the error function

eij(xi,xj) = zij − ẑij(xi,xj). (2)

Minimizing the energy of the graph consists in finding the configuration of
the nodes x∗ that minimizes the energy of all the edges

F(x) =
∑
〈i,j〉∈C

eT
ijΩijeij , (3)

thus, it seeks to solve the following equation:

x∗ = argmin
x

F(x). (4)

A graph-based SLAM engine will already provide a graph in a minimal energy
configuration. However, when merging two graphs, the individual solutions might
not be globally optimal due to the addition of constraints between different
graphs. Thus, to find the most likely configuration, we need to compute a new
assignment of poses that minimizes the following equation:

F(X ) =
∑
〈i,j〉∈C1

eT
ijΩijeij +

∑
〈i,j〉∈C2

eT
ijΩijeij +

∑
〈i,j〉∈C12

eT
ijΩijeij (5)

Here C1 and C2 are respectively the edges in the first and the second graphs,
while C12 are the edges connecting the first and the second graph. To solve this
problem we use the open source g2o optimization package [13]. The effects of
potential outliers is reduced by using Dynamic Covariance Scaling [1] to lessen
the contribution of edges that disagree with their neighbors.



3.2 Obtaining the Representation from Grid Maps

If we have only sets of grid maps, we can still generate the required pose graphs,
complete of measurements, by using Voronoi diagrams. The Voronoi diagram

(a) Input grid map (b) Extracted Voronoi dia-
gram

(c) Output graph of mea-
surements

Fig. 2: Extracting the Voronoi Diagram out of an input grid map, we are able to
generate a graph of measurements compliant with our graph matcher.

can be straightforwardly extracted as the locus of points in the free space that
are equidistant from at least two occupied cells in the map. On grid maps,
the Voronoi diagram provides also a good estimate of the topology of the envi-
ronment and a plausible trajectory for the robot. The pose graph is computed
sampling points of the diagram and correlating nearby nodes according to its
connectivity. Finally, the observations are obtained by ray-tracing the obstacles
of the grid map to the sampled poses, simulating the behavior of a laser scanner.
The typical output of the procedure is shown in Figure 2.

3.3 Data Association among Partially Consistent Maps

In this section we describe our graph-merging procedure. The input of our al-
gorithm are two graphs Gr and Gm, respectively the reference graph and the
matchable graph. The output is a set of edges M connecting vertices of Gr to
vertices of Gm. We assume that the two graphs have been partially overlayed
in a region around an initial node xr of the matchable graph. We progressively
deform the matchable graph, towards the reference, according to a breadth first
visit. Each time we expand a node xc in the current graph, we seek for neigh-
bors in the reference and we attempt to match the observations through a data
association routine. If the results of the observation matching are satisfactory,
we initialize the position of the expanded node according to the one provided by
the matching procedure. This will make the two corresponding observations in
the two different maps overlapping, and we add the corresponding edge to M.

Subsequently, we schedule for expansion all the neighbors of xc in Gm, and we
set their position based on the newly computed position of xc and the connecting
edge. The pseudo-code for this procedure is shown in Algorithm 1.



Notice that the algorithm is independent from the sensor used. The only
requirement is to provide a function tryMatch(n,xc) that attempts to register
the observation made from two nodes, and if found, returns the corresponding
transformation. In our current implementation the function tryMatch(n,xc) is
implemented by a scan-matching routine.

Algorithm 1 Graph Merge

Require: Gr: reference graph, Gm: current graph, xm : initial vertex in Gm, ∆: mini-
mum distance for matching, minScore: minimum score to accept a match.

Ensure: M : edges connecting vertices of Gr to vertices of Gm.

M := ∅; {Initialize the output set of measurements}
xm.setParent(xm);
queue.pushBack(xm);
while ! queue.empty() do

xc = queue.front(); {Extract the first node of the matchable graph}
queue.popFront();
N = findNeighbors(Gr,xc); {Find the neighbors of xc in the reference graph}
S := ∅; {clear the set of matching results}
for all n ∈ N do {Try to match each neighbor and put the results in S}

if |n− xc| < ∆ then
S.add(tryMatch(n,xc));

end if
end for
s = bestMatch(S); {Pick up the best match}
if s.score() > minScore then
M.add(edge(xc,n, s.transform())); {Create a new edge and add it to M}
xc = n⊕ s.transform(); {Initialize xc applying the transform of s to n}

end if
for all xn ∈ neighborsOf(xc) do

if xn.parent() == null; then
xn.setParent(xc);
e = edgeBetween(xc, xn);
xn = xc ⊕ e.transform();
queue.pushBack(xn);

end if
end for

end while

4 Experiments

We evaluated our approach on real and simulated robot systems, and through
synthetic experiments. Experiments with raw real data show the applicability of
our system to a practical scenario, while synthetic experiments characterize the
performance of our method with varying parameters.



(a) First graph (b) Second graph (c) Global map

Fig. 3: This figure illustrates the behavior of our algorithm on the Bremen Uni-
versity dataset. a), b) are the input pose graphs, representing different portions
of the same environment. c) shows the merged pose graph.

4.1 Raw Data Experiments

Our scenario consists in a mobile robot equipped with a laser range finder and
a test environment. We acquired the datasets in different, but partially over-
lapping, portions of the environment. We processed each dataset with a graph-
based SLAM engine to obtain the corresponding pose graph. We then compute
two solutions, one obtained using our approach, and another derived via a gradi-
ent descent algorithm. Finally, the computed solutions are compared evaluating
their entropy, [2]. To analyze the behavior of the algorithm when working on grid
maps, obtainable using also non graph-based SLAM engines like GMapping [9],
we computed an occupancy grid map out of each pose graph. From each grid
map, we recompute a pose graph as described in Section 3.2, and we seed them
as input to our algorithm.

We conducted the experiments above using a real robot in our building (Dis-
Basement). In addition, we used some public datasets [10] to generate realistic
maps. We then used the Stage simulator to record multiple datasets of the same
environment. Table 1 summarizes the results of our experiments, while Figure 3
shows a typical result. In all cases we analyzed the final solution of our system
provided a lower entropy than the baseline, thus a more consistent map.

4.2 Synthetic Experiments

We found that the dominant aspect influencing the behavior of our system is
the error affecting the local maps solutions. To quantify this effect, we generated
a set of synthetic pose graphs of a robot moving in a Manhattan world. We
generated edges between nearby poses and we corrupted them with Gaussian



Dataset Single Rigid Graph-Based
Transformation Map Merging

Dis-Basement-Small 2039.99 1538.54

Dis-Basement-Big-Real 2144.23 2090.17

Dis-Basement-Big-Voronoi 4059.91 3856.92

Dis-F1-Real 5639.96 5528.97

Dis-F1-Voronoi 5928.52 5778.84

UBremen-Real 3436.44 3308.56

Table 1: Analysis of the entropy of reconstructed global maps. We compare
the result of a gradient descent-based technique, second column, against the
approach presented in this paper, third column. In bold, we highlight the best
result, for each dataset used for the validation.
A more detailed description, together with the datasets, can be found at:
www.dis.uniroma1.it/~bonanni/datasets

noise. The noise in the edges models the errors in the matching procedure used
by a SLAM algorithm, and affects the final solution. Given two partial pose
graphs, we compute the ideal merged graph by adding all the edges between
nearby nodes in the two input graphs and we optimize the final result. This
result is the best we can do with the noisy input data, and serves us as a baseline.
The ideal edges are computed from the ground truth accessible by the simulator.
Figure 4 shows the typical pose graphs used in these experiments. In addition
to the sensor noise, we also characterized the potential failures of the matching
routine used in the tryMatch() function of Algorithm 1. The chances of success
of a scan matcher depend mostly on how good is the initial guess. We simulated
a scan matcher, by implementing a tryMatch() function that, having access to
the ground truth, reports a solution only if the relative transform of the nodes
passed as argument is close to the ground truth. Furthermore, we corrupt the
resulting transformations, by adding Gaussian noise.

We evaluate the quality of the solution of the graph matching by measuring
the Absolute Trajectory Error (ATE), [23], between the ideal solution and the one
computed by our algorithm. For sake of comparison, we also compute the ATE
of the best solution that can be found by a single rigid transformation, by using
the Iterative Closest Point algorithm, ICP, [17], between corresponding nodes.
In all cases the ATE of the merged map using our approach was substantially
smaller than the baseline obtained by rigid body transformation. As expected,
the quality of the solution decreases as the error residual increases, and the
estimate is mostly affected by the rotational part of the error.

5 Conclusion

In this paper we presented a generic approach to merge maps described as pose
graphs. In case the maps are available as grid maps we provided a technique to
extract plausible pose graphs based on Voronoi diagrams. Our method is able to
cope with residual errors affecting the input maps, and to remove the artifacts



(a) Reference trajectory without
noise

(b) Matchable trajectory without
noise

(c) Reference trajectory with noise (d) Matchable trajectory with
noise

(e) Standard map merging ap-
proach

(f) Our approach based on de-
formable bodies

Fig. 4: This figure shows a synthetic experiment where we evaluate our approach
on a simulated Manhattan world. a), b) show the ground truth trajectories of
the robot. c), d) show the outcome of a graph-based SLAM algorithm on these
trajectories. The residual error results in inconsistencies. e), f) show the result
of a standard map merging procedure that just overlays the maps with a single
transformation and of our approach.

that a standard map merging method leaves in. We validated our approach on
real world datasets, and we characterized its sensibility to the noise in the input
solutions by simulation, although a more detailed evaluation and a more precise
comparison with other existing methods is in progress. Future work is mainly



Translational Rotational Rigid Transformation Deformable Bodies
error [x, y] (m) error (deg) ATE ATE

[0.05, 0.01] 2 469.074 10.2425

[0.1, 0.01] 2 721.868 42.5413

[0.15, 0.01] 2 719.509 150.515

[0.2, 0.01] 2 877.672 243.552

[0.25, 0.01] 2 989.12 523.802

[0.05, 0.02] 2 402.974 9.49795

[0.1, 0.02] 2 682.997 32.4582

[0.15, 0.02] 2 893.562 62.5047

[0.2, 0.02] 2 1029.25 296.88

[0.25, 0.02] 2 1130.6 394.299

[0.05, 0.03] 2 336.44 10.4215

[0.1, 0.03] 2 593.754 30.4705

[0.15, 0.03] 2 825.884 59.5759

[0.2, 0.03] 2 1058.69 310.821

[0.25, 0.03] 2 1329.29 421.79

Table 2: Analysis of the absolute trajectory error at increasing levels of gaussian
noise. For the translational error, we perturbed both the x, and y axes. In bold,
we highlight the best result, at the given noise configuration. Our approach,
fourth column, offers better performance with respect to the alignment obtained
by a single rigid transformation, third column.

focused at extending the approach to the 3D case, since it represents the new
horizon of different modern SLAM techniques.
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8. Grisetti, G., Kümmerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based
slam. Magazine on Intelligent Transportation Systems 2(4) (2010) 31 – 43

9. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping
with rao-blackwellized particle filters. IEEE Trans. on Robotics 23(1) (2007) 34–46

10. Howard, A., Roy, N.: The robotics data set repository (Radish) (2003)
http://radish.sourceforge.net/.

11. Huang, W.H., Beevers, K.R.: Topological map merging. The International Journal
of Robotics Research 24(8) (2005) 601–613

12. Jennings, J., Kirkwood-Watts, C., Tanis, C.: Distributed map-making and navi-
gation in dynamic environments. In: Intelligent Robots and Systems, 1998. Pro-
ceedings., 1998 IEEE/RSJ International Conference on. Volume 3., IEEE (1998)
1695–1701
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