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Abstract— This paper describes an unsupervised approach to
retrieve the kinematic parameters of a wheeled mobile robot.
The robot chooses which action to take in order to minimize
the uncertainty in the parameter estimate and to fully explore
the parameter space.

Our method explores the effects of a set of elementary motion
on the platform to dynamically select the best action and to stop
the process when the estimate can be no further improved.

We tested our approach both in simulation and with real
robots. Our method is reported to obtain in shorter time
parameter estimates that are statistically more accurate than
the ones obtained by steering the robot on predefined patterns.

I. INTRODUCTION

Calibrating a robot is a tedious and time consuming
mandatory procedure, whose outcome influences the overall
system performances. A small error in calibration might
lead to severe inconsistencies in tasks that rely on sensor
information such as localization, mapping and navigation in
general.

The task of calibrating a mobile robot has been addressed
since many years. In this paper we focus on the so called
kinematic calibration. In a wheeled mobile robot this consists
of estimating the odometry parameters, that are required to
convert wheel encoder ticks in a relative motion of the mobile
base on a local plane, and of estimating the position of one
or more sensors on the mobile base.

Several approaches to address this task have been proposed
in the literature. All of them are regarded as passive pro-
cesses, where the user moves the platform in an environment,
recording the data from the encoder and from the extero-
ceptive sensors (like laser scanners or cameras) mounted on
the robot. The calibration procedure consumes these data
and seeks for the parameters that better explain the sensor
perceptions, given a calibration pattern.

The quality of the calibration is greatly influenced by the
trajectory taken by the robot, and for specific combination of
platforms/sensors there are common motion patterns that are
likely to produce good results. As an instance, calibrating a
wheeled platform moving on a plane and equipped with a
laser scanner can be done by moving the robot on a square
or along an eight-shaped path in a known room so to explore
the entire parameter space.
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Fig. 1: On the top of the image two different kind of mobile
robots are shown, a differential drive and an omnidirectional
base. In the bottom the respective baseline estimates are shown
during the execution of different calibration strategies along with
their uncertainties. The green dashed line represents the evolution
observed during the unsupervised procedure. The blue dotted line
shows the evolution during the calibration following the square-
path. Lastly, the magenta dash-dotted line shows the evolution of the
observed parameter following the eight-shaped path. In the bottom
right image, even the ground truth value (black solid line) is shown
since the experiment was conducted in simulation.

Yet, this procedure needs to be typically carried on by an
expert. To produce sufficient data to guarantee a reasonable
calibration, the data acquisition usually lasts some minutes.

In this paper we present a fully automatic approach
for calibrating the kinematic parameters of a mobile robot
equipped with a sensor suitable for motion tracking, such as
a depth camera or a laser scanner. The system relies only
on the knowledge of the kinematic model of the robot, and
chooses how to move in the environment to minimize the
uncertainty of the estimate and to fully explore the parameter
space.

We performed extensive tests on robots having different
kinematic models both in real world scenarios and in simu-
lation. We compared our results with the ones obtained by
manually executing fixed calibration patterns. In our tests
the proposed approach provided statistically more accurate
parameter estimates and required less time than the manual
procedures.

Figure 1 shows a motivating example of our procedure,
used to calibrate two types of mobile base. The plots in
the second line show the evolution of the estimate and its



uncertainty as more training data are gathered.

II. RELATED WORK

Calibrating a mobile robot has been addressed since more
than two decades. In this section we provide an overview
of approaches addressing this topic and we relate them with
our contribution.

Borenstein and Feng [4] developed a method named
UMBmark. It requires to drive a differential drive robot
along a square path both clockwise and counterclockwise.
Following this cyclic path, the robot has to come back to
the starting position. The distance between the initial pose
and the final pose measured by the odometry represents the
error. Minimizing such error leads to the calibration of the
direct kinematics of the wheeled base. This method relies on
a pre-constructed trajectory and it neglets the possibility to
calibrate nothing but the odometry parameters.

Subsequently Kelly [7] proposed a generic odometry cal-
ibration approach that does not require the robot to travel
on a squared path. Such method practically requires to drive
the robot along any trajectories for a couple of dozens of
times while predefined waypoints along the paths are used
as ground truth. The quality of results is highly dependant
on the trajectories involved in the calibration as well as the
number of ground truth points.

Chenavier and Crowley [6] worked on a Kalman filter to
calibrate both the odometry parameters and the camera pose
on the mobile robot. A known map of fixed objects, deployed
into the environment, is exploited by the camera, which is
treated as bearing sensor.

The approach of Martinelli et al. [2] simultaneusly es-
timates the systematic and non systematic odometry error
of a mobile robot. By using this statistics they enhance the
effectiveness of a gaussian filter for SLAM [8].

Censi et al. [1] proposed a max likelihood approach which
does not rely on specific trajectories. The method provides
a simultaneous calibration of both the intrinsics odometry
parameters as well as the pose of a 2D laser scanner used
egomotion estimator.

Kümmerle et al. [9] augment the state of a graph based
SLAM method with unknown calibration parameters. This
approach allows to simultaneously calibrate both odometry
and position of sensors while the robot operates. It is
particularly effective in case of non-stationary situations that
might occur during a mission (e.g. changes in the kinematics
due do varying load distributions).

The last two approaches are among the few that address
the issue of calibrating the odometry and the sensor positions.
Yet, they operate as passive processes consuming the data as
they are gathered by the moving robot.

The path taken by the robot, however has a great influence
on the quality of the calibration. Each particular motion along
the trajectory might depend only on a subset of parameters.

III. LEAST SQUARES CALIBRATION OF A MOBILE ROBOT

Calibrating the kinematic parameters k of a wheeled
mobile platform means estimating the coefficients ko that
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Fig. 2: This figure illustrates the relation between the mobile base
and the sensor reference frame. The relative pose of the sensor, with
respect to the robot frame, is ks. While the mobile base moves along
the trajectory oi, the sensor will move along the path zi in its own
reference frame. Lastly, kb represents the robot baseline.

allow us to compute the relative motion of the base from
the ticks measured by the encoders. If the robot is equipped
with one or more exteroceptive sensor, these parameters also
include the relative position of the sensor ks w.r.t. the mobile
base, as shown in Figure 2.

Knowing the mobile base parameters ko and the ticks
of the wheel encoders ui we can compute the motion of
the mobile base during the ith interval, through a direct
kinematics function f(ko,ui). Let oT

i = (xo
i , y

o
i , θ

o
i )

T be
this motion. If the robot is equipped with an exteroceptive
sensor such as a laser scanner, and it operates on a plane,
the sensor parameters are augmented with the sensor position
ks = (xs ys θs)T . Estimating the full kinematics of the robot
thus means estimating the vector kT = (koT ksT ). If there
is an algorithm that allows to estimate the ego-motion of an
exteroceptive sensor uniquely from the sensor’s observations,
we can use the output of this algorithm as a reference for
calibration. In particular, if the robot is equipped with a
laser scanner such an estimate can be obtained by a scan-
matcher. Also RGBD cameras can be used for this purpose,
as their data can be fed to tracking algorithm such as
KINFU[3] or NICP [11] that provides the trajectory of the
sensor. In the remainder of this section we focus on laser
scanners and 2D motion, however the results of this paper
can be straightforwardly generalized to the 3D case. Let
zi = (xi yi θi)

T be the estimated motion of a sensor during
the ith interval.

Knowing the position of the sensor on the robot ks and
the motion of the base we can estimate the motion of the
sensor ẑi from the encoder measurements ui as

ẑi = hi(k) (1)
= oi ⊕ ks (2)
= f(ko,ui)⊕ ks. (3)



Here ⊕ denotes the motion composition operator as de-
scribed by Smith and Cheesman [12], and h(·) is the
prediction function depending on the parameters and the
encoder measurements.

The goal of our least squares calibration procedure is
thus to find the parameters k∗, that minimize the difference
between the predicted and measured displacements of the
sensor:

k∗ = argmin
∑
i

‖hi(k)− zi‖Ωi
. (4)

Here ‖v‖ denotes the Ω norm of a vector v, as

‖v‖Ω = vTΩv. (5)

The matrix Ωi denotes the information matrix of the solution
reported by the scan matcher and it can be obtained by
using the method of Censi [5]. Considering the information
matrices it allows to adjust the contribution of the different
error terms based on the quality of the scan matcher solution.
Since our measurement zi ∈ SE2, performing the vector
difference in Eq. (4) might result in non-valid configurations
due to angular wraparounds. This effect can be lessened by
substituting the − with a more appropriate motion decom-
position, denoted by the symbol 	. Thus, our function to
minimize becomes:

k∗ = argmin
∑
i

‖hi(k)	 zi︸ ︷︷ ︸
ei(k)

‖Ωi
. (6)

Here ei(k) is the error of the ith measurement and denotes
the relative transform that would bring the estimate of the
sensor motion obtained from the odometry to match the
motion estimated by the scan matcher.

Using least squares the problem in Eq. (6) can be solved
iteratively, assuming a reasonable estimate of the nominal
parameters is available. At each iteration the algorithm
refines the current estimate k by computing a perturbation
∆k that minimizes a quadratic approximation of Eq. (6) in
the form:

∆T
k H∆k + bT∆k + c. (7)

The minimum of Eq. (7) can be found by solving the
following linear system:

H∆k = −b. (8)

The matrix H and the vector b are obtained from Eq. (6) by
linearizing each error ei(k) around the current guess as:

ei(k + ∆k) ' ei(k)︸ ︷︷ ︸
ei

+
∂ei(k)

∂k︸ ︷︷ ︸
Ji

∆k. (9)

Applying the definition of Ω norm in Eq. (5), substituting
Eq. (9) in Eq. (6) and grouping the terms leads to the
following expression for H and b:

H =
∑
i

JT
i ΩiJi (10)

b =
∑
i

JT
i Ωiei (11)
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Fig. 3: This figure illustrates the relation between the youbot base
and the sensor reference frame. The relative pose of the sensor,
with respect to the robot frame, is ks. While the mobile base moves
along the trajectory oi, the sensor will move along the path zi in
its own reference frame. As expressed by the kinematics of the
robot, kbb is given by the average between the two baseline, i.e
kbb = (kb1+kb2)/2

At each iteration the current guess is refined by adding the
computed increments as:

k← k + ∆k. (12)

Under Gaussian assumptions on the measurement noise,
the H matrix represents the inverse covariance of the pa-
rameter estimate. Thus by analyzing H at the equilibrium
we can evaluate the quality of the calibration.

In the remainder of this section we provide the details
of the two different kinematic models we used in our
experiments.

1) Differential Drive: The odometry parameters are the
following

ko =
(
kl kr kb

)T
. (13)

Here kl and kr denote respectively the coefficient between
the circumference of the left and right wheel and the encoder
ticks per revolution of the wheels’ shaft. kb is the distance
between the wheels (baseline). ui =

(
tli t

r
i

)
consists of the

tick increments reported by the left and the right wheels,
denoted respectively as tli and tri . The direct kinematics
f(k,ui) can be approximated as:

oi = f(ko,ui) =

 (krtri+kltli)
2
0

krtri−kltli
2kb

 (14)

2) Omnidirectional Robot: The odometry parameters are

ko =
(
kfl kfr kbl kbr kbb

)T
, (15)

where the first four parameters are the coefficients for
respectively front left, front right, back left and back right
wheels. kbb is a coefficient defined as the average between
baseline of the wheels and the distance between the front



and rear axes, as shown in Figure 3. The encoder ticks are
stored in a 4 dimensional vector uT

i = (tfli t
fr
i t

bl
i tbr

i )T as

oi =

 −1/4 1/4 −1/4 1/4
1/4 1/4 −1/4 −1/4

1/4kbb 1/4kbb 1/4kbb 1/4kbb




kfltfli
kfrtfri
kbltbl

i

kbrtbr
i


(16)

IV. ISSUES OF CALIBRATION USING LEAST SQUARES

Most of the calibration procedures in the literature rely on
least squares minimization. The general procedure consists
in moving the robot along a predefined trajectory, while
recording its encoder ticks. During the acquisition, a ground
truth of the position of the mobile base or its sensors is
obtained through some external observer or by algorithms
that process only the exteroceptive sensor input.

By knowing the kinematic model is then possible to
estimate the motion of the mobile base or its sensors from
the measured encoder ticks.

The trajectory is chosen according to some common sense
rule in order to provide the least squares engine with suffi-
cient information to produce a reasonable estimate. These
trajectories are chosen to be rather long to minimize the risk
of having insufficient information and thus having to repeat
the task. However, the longer an experiment the higher are
the chances that something goes wrong. Additionally, in case
of different kinematic models the choice of a good trajectory
to follow is left to the user’s experience.

Often the parameters are not fully observable while fol-
lowing a specific motion pattern. This leads the system to
converge at a value that, while minimizing the error metric
in Eq. (6), produces invalid results. In such situations the
calibration worsens with the length of the trajectory. This
fact is shown in Figure 4, where we show the evolution of
the estimate of the baseline and the encoder coefficients of a
robot that is constantly rotating on the spot. Note, however
that the ratio between baseline and ticks is approaching the
nominal value.

In presence of non-linearities, the success of a least
squares procedure greatly depends on the initial guess.
However, due to non-observabilities this initial guess might
become inconsistent if the trajectory does not allow to
explore sufficiently the parameter space.

A solution to this problem is to continuously estimate the
quality of the calibration, and choose the motion patterns that
improve the estimate. A good calibration is characterized by
being

• accurate: it is highly consistent with respect to the
training data. This can be measured by a low value of
the error function in Eq. (6).

• complete: it explores all the parameter space, without
overfitting the training data. This can be measured by
analyzing the ratio between the smaller and bigger
eigenvalue of the inverse covariance H at equilibrium.
The higher this value the more “balances” is the uncer-
tainty, thus there are no directions where the uncertainty
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Fig. 4: The figures show the effects of the pure Rotate motion on
the ko parameters.

is substantially higher than others. The eigenvectors
of small eigenvalues typically denote a non-observable
parameter subspace.

When talking of a “balanced” covariance, the reader might
notice that the units of measure strongly affect the shape of
a covariance. As an example, expressing the the baseline kb

in cm. would result in a standard deviation of the estimate
that is 100 times bigger than if the baseline is expressed in
meters. This phenomena, if we need to estimate one single
parameter is not relevant. However, when multiple values
need to be simultaneously estimated (e.g. the baseline and
the coefficients kl and kr), the effect becomes dominant: a
standard deviation of one centimeter for the baseline might
be acceptable, while for the encoder coefficients is really
bad.

As a rule of thumb, one should “prescale” the units of the
parameters to a factor that reflects the desired accuracies. As
an example, if we want to estimate the odometry coefficients
at an accuracy of 1e − 5 meters and the baseline at 1e − 3
meters of accuracy, we should express the respective units
according to these scales. In this way, a standard deviation
along the ticks of 1e− 5 will be mapped with an eigenvalue
of 1. The same happens for a standard deviation along the
baseline of 1e− 3, that results in an eigenvalue of 1 turning
the uncertainty ellipse into a circle.

having two quantities expressed one incentimeters and one
in meters w

V. AUTONOMOUS CALIBRATION

In this section we sketch our method that allows a robot
equipped with an exteroceptive sensor to autonomously



choose its trajectory to quickly reduce the uncertainty about
its parameters. We remark that the approach is not specific
to a differential drive robot and can be easily extended
to other classes of wheeled robots such as Hackermann-
steering, synchro-drive or omnidirectional platforms.

Our procedure works as follows: The robot is provided
with a set of elementary motions motionj ∈ m . Each of
these motions obtained by setting a set of constant velocities
to each robot wheel, measured in encoder ticks. Typically,
each motion allows to observe only a subspace of the
parameter set.

When started, the system computes the effect that each
motion has on the observability of the parameters. This is
done by executing each motion while recording the encoder
ticks and the estimated motion from the scan-matcher. After
one motion motionj is executed, our procedure estimates
an optimal parameter kj set for that motion, together with
its inverse covariance Hj . This is done by solving the
least squares problem in Eq. (6), by considering only the
measurements gathered during the execution of the motion.
We call this stage “exploration”, as the system estimates the
effect that each particular motion has to the parameters.

After the system is done with exploration, the real training
begins. The idea is to initialize the calibration procedure
from scratch, and compose a trajectory by selecting at each
time the motion that improves the estimate of the parameters
based on an approximation of the two criteria described
above.

The tuple 〈z1:t,Ω1:t,u1:t〉 constitutes our motion history
up to the current time t, and at the beginning is empty. Here
z1:t and Ω1:t are respectively the relative motion observed by
the exteroceptive sensor and its inverse covariance, while u1:t

are the encoder differences. Let kt and Ht be the parameter
estimate obtained by solving Eq. (6) with the measurements
up to time t.

Assuming the current parameter estimate kt to be reason-
ably close to the optimum, and considering the cumulative
nature of the H matrix highlighted by Eq. (10), than selecting
the motion motionj would result in a new Ĥj

t obtained as:

Ĥj
t = Ht + Hj . (17)

This means that we can estimate the effect on our cali-
bration of augmenting the current history of measurements
with the ones obtained by motion motionj . The determinant
of the predicted information matrix denotes the cumulative
information in the estimate. The higher det(Hj

t ), the more
convenient will be executing the motion motionj .

Thus we select the motion motionl such that

l = argmax
j

det(Ht + Hj) (18)

and we perform this motion with the robot by adding to the
history of measurements the ones gathered during the current
execution of the movement.

This procedure is repeated until the system has reached
convergence and the parameter space is sufficiently explored.
The first condition is checked by monitoring the evolution

Fig. 5: This image shows the environment, and its map, where
the mobile base executed the unsupervised calibration procedure.
The corridor environment has not been augmented with any kind
of additional structure

of the normalized χ2 error of the estimate, measured as the
value of Eq. (6) analyzed at the current estimate. The second
condition is evaluated by monitoring the ratio between the
smaller and the larger eigenvalue of the current H.

More formally, our approach stops when

1

t

t∑
i=1

‖hi(kt)	 zi‖Ωi
− ‖hi(kt−1)	 zi‖Ωi

< ε (19)

and
λmin
t

λmax
t

> γ. (20)

In practice at each step our system decides which motion
to execute in order to improve its knowledge based on
the past experience and on the predicted behavior of the
information gathered during the execution of a movement. It
stops when it has sufficient knowledge about the parameter
space, both in term of completeness and consistency. In our
experiments we set the following values for the termination
criterion: ε = 1e− 9 and γ = 1e− 2.

VI. EXPERIMENTS

We compared our approach with manual calibration meth-
ods, both in real world and simulated experiments using
two types of mobile bases having different kinematics. We
conducted real world experiments using the Kobuki Turtlebot
differential drive robot in the department corridors (Figure 5),
while we performed simulated experiments on V-REP [10]
where we used an ActivMedia Pioneer 2 DX (differential
drive) and a KUKA YouBot (omnidirectional). All platforms
were equipped with a Hokuyo-URG scanner.

We performed two types of manual calibration for each
platform, by executing paths that depend on the kinematics
of the robot. Subsequently, we processed the data acquired



along the path by running incrementally the least squares
estimation described in Section III. To monitor the evolution
of the estimate as more data are gathered, we computed a
new solution each time a certain number of new training data
become available.

We then executed our automatic calibration for each
platform. We selected the basic motions based on the type of
kinematics, and let the system learn the effects of each mo-
tion. Subsequently, we let the system run and automatically
choose the sequence of motions to execute, while recording
the training data. After a new motion is executed, our
approach provides a new estimate that can be compared with
the one achieved by manual calibration after incorporating
the same number of samples.

In the remainder of this section we describe the manual
calibration paths taken for the different platforms and the
basic motions used to start our automatic calibration.

3) Differential Drive: The calibration paths taken by the
manual procedure for the differential drive robots are:

• The standard “square” path, where the robot moves
along a square having a side of 1 meter, and at the
end of each corner rotates of 90◦. After a full square
has been completed, the robot continues by reverting
the path.

• The standard “8” path, where the robot moves along
an 8 shape covering an area of approximately 4 by 2
meters.

The basic motions taken by the differential drive robot are
the following:

• Forward: obtained by setting the speed of right and left
wheel to the same value.

• Rotate: obtained by setting the speed of right and left
wheel to opposite values.

• Arc: obtained by setting the speed of right and left wheel
to different values.

Figures 6 and 7 show the results of these experiments for
the real world experiments with the turtlebot and for the
simulated experiment with the Pioneer 2. In the simulated
experiments we had access to the ground truth, thus we
perform a direct estimation of the accuracy, whereas in the
real world experiments we could only evaluate indirectly the
estimate by plotting the reconstructed motion of the sensor
under different calibration estimates, as shown in Figure 9

In all cases our approach provided more consistent esti-
mates, and required a lower number of samples to produce
usable values.

4) Omnidirectional Robot: The calibration paths taken by
the manual procedure for the omnidirectional platform are:

• Double “square” path, where the robot moves along a
square having a side of 1 meter. The first time the robot
traverses the square, it does not rotate at the corners,
while the second time it performs a 90◦ rotation as if
it was a differential drive, and the procedure restarts.

• Double “8” shaped path, where the robot moves along
an 8 shape covering an area of approximately 4 by 2
meters. The first revolution is done without rotation,
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Fig. 6: This image shows the evolution of the parameters estimate
for the real differential drive platform (Turtlebot). On the left side
of the image the evolution of xs is shown, while on the right side
the same evolution for ys is shown. In both cases, the uncertainties
in the parameter estimate are highlighted by coloured strips. The
green dashed line represents the evolution observed during the
unsupervised procedure. The blue dotted line shows the evolution
during the calibration following the square-path. Lastly, the magenta
dash-dotted line shows the evolution of the observed parameter
following the eight-shaped path.
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Fig. 7: This image shows the evolution of the parameters estimate
for the differential drive platform simulated in V-REP (Pioneer
2). On the left side of the image the evolution of xs is shown,
while on the right side the same evolution for ys is shown. In both
cases, the uncertainties in the parameter estimate are highlighted
by coloured strips. The black solid line represents the ground truth
value (available in simulation) for the observed parameter. The
green dashed line represents the evolution observed during the
unsupervised procedure. The blue dotted line shows the evolution
during the calibration following the square-path. Lastly, the magenta
dash-dotted line shows the evolution of the observed parameter
following the eight-shaped path.

while the second revolution is done as if the platform
was a differential drive.

The basic motions taken by the differential drive robot are
the following:

• Forward: obtained by setting tfl = tbl = −tfr = −tbr

to the same value.
• Sideward: obtained by setting tfl = tfr = −tbl = −tbr

to the same value.
• Rotate: obtained by setting tfl = tfr = tbl = tbr to the

same value.
• Arc: obtained by setting tfl = −tbr and −tfr = tbl to

different values.

Figure 8 shows the results of this simulated experiment.
We remark that performing manual calibration for the youbot
required repeated trials due to the lack of standard calibration
strategies and the increased dimension of the parameter
space. The same did not hold for the automatic calibration
that quickly converged towards consistent estimates.
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Fig. 8: This image shows the evolution of the parameters estimate
for the omnidirectional platform simulated in V-REP (Kuka Youbot).
On the left side of the image the evolution of xs is shown, while
on the right side the same evolution for ys is shown. In both
cases, the uncertainties in the parameter estimate are highlighted
by coloured strips. The black solid line represents the ground truth
value (available in simulation) for the observed parameter. The
green dashed line represents the evolution observed during the
unsupervised procedure. The blue dotted line shows the evolution
during the calibration following the square-path. Lastly, the magenta
dash-dotted line shows the evolution of the observed parameter
following the eight-shaped path.

A. Behavior of Unsupervised Calibration on a Differential
Drive Robot

In this section we shortly report some recurrent behavior
we observed during the calibration of the differential drive
robot, to better understand the behavior of the approach.
Whereas we did not hardcode any heuristic for selecting the
motions, we observed that typically the system follows a
specific pattern, especially at the beginning. Usually the first
choice is to execute the Forward motion, since the Hforward

matrix has a higher determinant compared to the others. This
results in quickly reducing the uncertainty of the encoder
ratios kl, kr and of the laser heading θs.

After a pair of iterations, the system selects the Rotate
motion, that allows to estimate the baseline and the x − y
displacement of the laser, as highlighed by the eigenvalue
decomposition of Hrotate.

Subsequently we were unable to identify a specific pattern
in the selection of the motion. We conjuncture it depends
highly on the laser position. If the laser is very close to the
center of the platform, the x − y coordinates of the laser
position are poorly observable through a pure rotation, and
the system tends to select the Arc motions. Conversely if
the laser is located far from the center it tends to select the
Rotate motion.

VII. CONCLUSIONS

In this paper we propose an automatic calibration proce-
dure to determine the kinematic parameters of a mobile robot
and its sensors. Our approach dynamically explores the space
of possible actions, to determine the effect that each of them
has on the parameter estimate. After this exploration, our
system chooses which action to take in order to improve the
current estimate. To this extent it aims at observing the full
parameter space and at reducing the error of the estimate until
no further improvements are possible. Our method compares
favourably with procedures that require the human assistance
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Fig. 9: In this figure we show the odometry estimation of the mobile
base. The red solid path is the ground truth. The green dashed
path is the odometry computed with the parameters estimated by
the unsupervised calibration. The blue dotted path is the odometry
computed using the parameter estimate obtained with following a
squared path, while the magenta dash-dotted path is the odometry
computed using the parameters estimated following an 8-shaped
path.

both in terms of accuracy and efficiency and dynamically
adapts to the robot configuration.
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