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Abstract— The ability to explore an unknown environment is
an important prerequisite for building truly autonomous robots.
Central capabilities for autonomous exploration is the selection
of the next view point(s) for gathering new observations
as well as robust navigation. In this paper, we propose a
novel exploration strategy that exploits background knowledge
by considering previously seen environments to make better
exploration decisions. We furthermore combine this approach
with robust homing so that the robot can navigate back to
its starting location even if the mapping system fails and does
not produce a consistent map. We implemented and tested the
proposed approach in ROS. The experiments indicate that our
method improves the ability of a robot to explore challenging
environments and improves the quality of the resulting maps.
Finally, we are able to navigate the robot back home, even if
we cannot use the map.

I. INTRODUCTION

Exploration is the task of selecting view points so that a
robot can cover the environment with its sensors to build a
map. The ability to robustly operate without user intervention
is an important capability for exploration robots, especially
if there is no means for communication between the robot
and an operator. Most exploration robots always start as-
suming zero knowledge and do not exploit any background
knowledge about the environment or typical environments.
They build a map of the environment online and make
all navigation decisions based on this map. As long as
this map is consistent, the robot can perform autonomous
navigation by planning the shortest path—for example using
A*—from its current location to its next vantage point
using the map. Although recent SLAM systems are fairly
robust, there is a chance that they fail, for example, due to
wrong data associations generated by the front-end. Even
current state-of-the-art SLAM approaches cannot guarantee
the consistency of the resulting map. Computing a path
based on an inconsistent map, however, is likely to lead
to a failure and possibly to loosing the robot if operating
in a hazardous environment. Thus, exploring robots should
always decide where to go next and at the same time verify if
their map is still consistent (see sketch in Fig. 1). Considering
existing approaches, however, it is fair to say that most
exploration systems follow the paradigm that they (a) make
their navigation and exploration decisions using the current
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Fig. 1. Mobile robot exploration has to answer the question: “Where to go
next?”. Our approach exploits previously mapped environments to predict
potential future loop closures and thus to select better target locations.
When the statistical map consistency tester provides the robot with the
information that the map is not consistent anymore the robot starts rewinding
the trajectory using our robust homing method.

map only and (b) assume that the map is consistent and thus
can be used as the basis for path planning and navigation.

In this paper, we aim at relaxing these assumptions. The
key idea is to consider the knowledge gained from previously
conducted exploration missions to support the navigation sys-
tem of the robot. This is motivated by the fact that selecting
appropriate target locations during exploration supports the
mapping process, and can increase the probability of building
a consistent map. Furthermore, we want to be able to safely
navigate our robot back to its starting location, even if the
mapping process failed.

The first contribution of this paper is a novel approach to
exploiting background knowledge while generating explo-
ration behaviors to support mapping. The key idea is to use
previously experienced environments to reason about what
to find in the unknown parts of the world. To achieve this,
we equip our robot with a database to store all acquired
(local) maps and exploit this knowledge when selecting



target locations. Our research is motivated by an exploration
project for autonomously digitizing the Roman catacombs,
which are complex underground environments with repetitive
structures. To predict possible geometries of the environment
the robot may experience during exploration, we exploit
previously visited areas and consider the similarities with the
area around the current next view point. This allows the robot
to actively seek for loop-closures and in this way actively
reduce its pose uncertainty. Our experiments indicate that
this approach is beneficiary for robots when comparing it to
a standard frontier-based exploration method.

The second contribution is a robot homing approach with
the goal of retrieving our robot even if the SLAM system
failed to build a consistent map. To avoid that our robot gets
lost, we propose a robust homing system consisting of two
distinct parts. Part A performs a statistical analysis of the
map and thus provides the information about its consistency.
We build upon our previous work [19] for performing a
cascade of pair-wise consistency checks using the observa-
tions perceiving the same areas. To avoid performing such
checks on the overall map, we reduce the area to analyze by
planning the shortest homing route for the robot assuming a
consistent map. We then analyze the map consistency only
along that path and can estimate on the fly if the map
around this path is consistent or not with a given confidence
level. If it is consistent, we navigate back on the verified
homing path. Part B of our approach is responsible for
driving the robot back to its starting location without a map.
We achieve this by rewinding the trajectory that the robot
took to reach its current pose. If the motions of the robot
were perfect, i.e. would lead to the desired robot pose in the
world frame, we would be able to simply invert the motion
commands performed by the robot and could safely reach the
starting location. Motion execution and odometry, however,
are often noisy. As a result, simply following inverse motion
commands will not bring the robot to the starting location in
the real world in most cases. Therefore, we take into account
the sensor information to guide the robot back by matching
the observations with the past.

II. RELATED WORK

The majority of techniques for mobile robot exploration
focus on generating motion commands that minimize the
time needed to cover the whole terrain. Several techniques
also assume that an accurate position estimate is available
during exploration [15], [38]. Whaite and Ferrie [36] present
an approach that uses the entropy to measure the uncer-
tainty in the geometry of objects that are scanned with a
laser range sensor. Similar techniques have been applied to
mobile robots [31], [23], but such approaches still assume
to know the correct pose of the vehicle. Such approaches
take the map but not the pose uncertainty into account
when selecting the next vantage point. There are, however,
exploration approaches that have been shown to be robust
against uncertainties in the pose estimates [8], [14].

Besides the idea of navigating to the next frontier [38],
techniques based on stochastic differential equations for

goal-directed exploration have been proposed by Shen
et al. [28]. Similar to that, constrained partial differential
equations that provide a scalar field into unknown areas have
been presented by Shade et al. [27]. An information-theoretic
formulation that seeks to minimize the uncertainty in the
belief about the map and the trajectory of the robot has been
proposed by Stachniss et al. [32]. This approach builds upon
the works of Makarenko et al. [18] and Bourgault et al. [5].
Both extract landmarks out of laser range scans and use
an Extended Kalman Filter to solve the underlying SLAM
problem. They furthermore introduce an utility function
which trades-off the cost of exploring new terrain with the
potential reduction of uncertainty by measuring at selected
positions. A similar technique has been presented by Sim et
al. [29], who consider actions to guide the robot back to a
known place in order to reduce the pose uncertainty of the
vehicle.

In general, the computation of the expected entropy reduc-
tions is a complex problem, see Krause and Guestrin [16],
and in all real world systems, approximations are needed.
Suitable approximations often depend on the environment
model, the sensor data, and the application. In some cases,
efficient approximations can be found, for example in the
context of monitoring lakes using autonomous boats [12].

Other approaches, especially in the context of autonomous
micro aerial vehicles (MAVs), seek to estimate the expected
feature density in the environment in order to plan a path
through areas that support the helicopter localization [24].
This can be seen as related to information-theoretic ap-
proaches, although Sadat et al. [24] do not formulate their
approach in this framework. A related approach to MAV
exploration seeks to select new vantage points during ex-
ploration, so that the expected number of visible features is
maximized, see Mostegel et al. [20].

An interesting approach by Fox et al. [9] aims at in-
corporating knowledge about other environments into a
cooperative mapping and exploration system for multiple
robots. This allows for predicting simplified laser scans of
an unknown environment. This idea was an inspiration for
our paper for predicting possible loop closures given the
environment structure explored so far. We use this approach
for exploring ancient catacombs, which are repetitive under-
ground environments, with a mobile platform, see Fig. 1.
Chang et al. [6] propose an approach for predicting the
environment using repetitive structures for SLAM. Other
background knowledge about the environment, for example
semantic information, can support the exploration process as
shown by Wurm et al. [37], Stachniss et al. [33] as well as
Holz et al. [13].

A central problem in robust exploration, however, is that in
case of a SLAM failure, the map becomes inconsistent. This
can prevent the robot from continuing its exploration mission
and—even worse—from being able to navigate back. It is
therefore important to be able to perform reliable navigation
without relying on a map.

Sprunk et al. [30] present a lidar-based teach-and-repeat
method to follow a route given by the user. The approach



relies on precise localization of the robot based on the
lidar measurements with respect to a taught-in trajectory.
Similarly, Furgale et al. [11] perform the ICP-based teach-
and-repeat approach on an autonomous robot equipped with
a high precision 3D spinning lidar. They extend the standard
teach-and-repeat approach by adding a local motion planner
to account for dynamic changes in the environment. Our
method to rewind the trajectory is similar to the teach-and-
repeat setup in this formulation. However, in contrast to
the mentioned methods, we use a substantially less accurate
robot and thus have to cope with somewhat larger deviation
from the reference trajectory.

Vision methods are also popular for teach-and-repeat ap-
proaches. Furgale et al. [10] present a vision-based approach
to teach-and-repeat for long range rover autonomy. During
a learning phase, their system builds a manifold map of
overlapping submaps as the rover is piloted along a route.
The map is then used for localization as the rover repeats
the route autonomously. They present an autonomous plan-
etary rover that is able to navigate even non-planar terrain
without relying on an accurate global reconstruction. Nitsche
et al. [21] extend a standard teach-and-repeat approach by
adding Monte Carlo localization to localize the robot with
respect to the learned path. They present vision-based tests
carried out both on a ground robot and an aerial drone.
Battesti et al. [1] present an online localization approach.
They use visual loop-closure techniques to create consistent
topo-metric maps in real-time while the robot is teleoperated
and localizes itself in such maps. This allows the robot
to follow the predicted path successfully compensating the
odometry drift. These visual methods, however, need sub-
stantial adaptation in order to be used in a setup similar to
ours: using monocular cameras to localize through feature
detection relies on having enough visual information, which
is not the case in the typically dark catacombs. The work
presented here is based on two conference publications [34],
[3]. In Perea et al. [34], we first described the idea of pre-
dictive exploration whereas Bogoslavskyi et al. [3] addresses
homing. With respect to the conference papers, we provide
here a unified view to the problem and a more detailed
description as well as new experiments.

III. ROBOT AND SENSOR SETUP

Our robot is a customized Mesa Element platform, see
Fig. 1. It is equipped with a laser range finder scanning in
a horizontal 2D plane around 60cm above the ground. The
robot is additionally equipped with two ASUS Xtion depth
cameras that observe the local area in front of the robot in
3D. Both cameras look forward, one slightly rotated to the
left and the other one to the right with a minimal overlap
in the middle. Our system relies on the 2D information for
solving the exploration task in order to decide which parts of
the scene have been explored, and where to move next. For
the robust homing presented in Sec. V, we take into account
the 3D depth images from the Xtions as this allows for a
more accurate alignment of the scans. Furthermore, a local
traversability analysis is done in 3D based on the Xtions [4].

IV. ENVIRONMENT PREDICTIVE EXPLORATION

The central question in exploration is “Where to go?”. Sev-
eral different cost functions for making the decision of where
to go next can be defined. The most popular one goes back to
Yamauchi [38], who guides the robot to the closest reachable
unexplored location. Yamauchi introduces the concept of
frontiers, which are the cells of an occupancy grid map at
the boundary between the free and the unexplored space.
In the standard setting, this approach seeks to minimize the
time that is needed to cover the environment with the robot’s
sensors and is a popular choice in mobile robotics. On the
other hand, exploring hazardous environments require trading
time for a more robust navigation that supports the mapping
system and avoids pose uncertainty.

A. Information-Driven Exploration

Given the fact that most real robots maintain a probabilis-
tic belief about their pose and the map of the environment,
an alternative approach is to select the target location that
is expected to minimize the uncertainty in the belief of
the robot. In this setting, the exploration problem can be
formulated as follows. At each time step t, the robot has
to decide which action a to execute (where to move next).
During the execution of a, the robot obtains a sequence of
observations z (for better readability, we neglect all time
indices).Thus, we can define the expected information gain,
also called mutual information, of selecting the action a as
the expected change in entropy in the belief about the robot’s
poses X and the map M :

I(X,M ;Za) = H(M,X)−H(M,X | Za). (1)

The second term in Eq. (1) is the conditional entropy and is
defined as

H(M,X | Za) =
∫
p(z | a)H(M,X | Za = z) dz. (2)

Unfortunately, reasoning about all potential observation se-
quences z in Eq. (2) is intractable in nearly all real world
applications since the number of potential measurements
grows exponentially with the dimension of the measurement
space and with time. It is therefore crucial to approximate
the integral of Eq. (2) so that it can be computed efficiently
with sufficient accuracy.

A suitable approximation, however, depends on the envi-
ronment model, the sensor data, and the application so that
no general one-fits-all solution is available. In our previous
work [32], we considered different types of actions: First,
exploration actions that guide the robot to the closest frontier
and this reduces the map uncertainty. As we have no further
information about the unseen area, it is difficult to distin-
guish two frontiers with respect to the expected uncertainty
reduction. Second, loop-closing and re-localization actions,
which are key to the uncertainty reduction about the robot’s
pose.

In this work, we aim at combining these types of actions
into a single one. We seek to predict what the so far
unseen environment beyond a frontier may look like based
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Fig. 2. Example of the submap retrieval using FabMAP2. The left image shows the query map, the other ones the best four matches from the database.

on background knowledge of previously seen environments
and select the frontier that potentially leads to a loop-closure.
In this way, we maximize the expected uncertainty reduction
in the belief of the robot about the world.

B. Utility Function for Exploration

Most exploration systems define a utility function to relate
the expected gain in information with the cost of obtaining
the information. As long as no constraints such as available
energy or similar are considered, the distance that the robot
has to travel to obtain its measurements is a standard choice.
This yields a utility function of the form

U(a) = I(M,Z;Za)− cost(a), (3)

so that the task of selecting the best action can be formulated
as

a∗ = argmax
a

I(M,Z;Za)− cost(a). (4)

Throughout this work, we define the cost function cost(a)
as the path length corresponding to action a, i.e. the length
of the trajectory from the current location of the robot to the
designated target location.

As mentioned in the previous section, estimating the ex-
pected information gain is challenging and computationally
demanding and thus we use the following approximation.
We assume that actions can reduce the robot’s uncertainty
about the map by exploring unseen areas and/or can reduce
its uncertainty about the trajectory by closing a loop:

a∗ = argmax
a

Imap(a) + Itraj (a)− cost(a). (5)

As we do not know how large the unknown area and thus the
number of unknown grid cells behind a frontier is, we may
argue that all frontiers yield the same expected information
gain with respect to the map uncertainty. Thus, we can
simplify Eq. (5) as long as we consider only exploration
actions to frontiers:

a∗ = argmax
a

Itraj (a)− cost(a). (6)

The expected information gain about the trajectory Itraj (a)
is mainly influenced by loop closures. The more likely a
loop closure can be obtained when executing an exploration
action a, the higher its expected gain. Thus, the remainder
of this section addresses the problem of predicting possible
loop closures.

C. Predictive Exploration

The key contribution here is to model the predictive
belief describing what the environment may look like in the
unexplored areas. To compute this belief, the robot exploits
environment structures it has seen in the past—either in the
environment explored so far or even from previous missions.
Our exploration system uses this predictive belief to evaluate
the frontiers as possible target locations for the exploration.
This allows us to select the frontiers that are likely to lead
to a loop-closure and thus to an active reduction of the
uncertainty in the robot’s belief. As we will show during
the experimental evaluation, this approach outperforms the
traditional frontier-based exploration system.

D. Querying for Similar Environment Structures

The key idea of this approach is to look for similarities
between the known areas around a frontier and portions of
previously mapped environments. Under the assumption that
environments are not random but expose certain structures
and that these structures tend to appear more than once, we
can use the already mapped areas in order to predict what
the environment beyond the frontier may look like.

The first step is to look for portions of the already mapped
environments that are similar to the area around the frontier
for which the prediction should be performed. To do this, we
incrementally build a database storing all local grid maps
that the robot experienced. To perform a similarity query,
we compare our local maps with the maps stored in the
database. To avoid a large number of expensive map-to-map
comparisons to search for similar submaps, we rely on a bag-
of-words inspired approach, a technique that is frequently
used in computer vision to search for image similarities.
More concretely, we apply FabMAP2 by Cummins and
Newman [7], an appearance-based approach we can use
to efficiently query our database. Although FabMAP2 was
originally designed to match camera images, it turns out that
we can also use it to effectively search for local grid maps
in a large database of maps. As FabMAP2 also provides
a likelihood l(m) for each match m, we can obtain a
belief about possible environment structures. Fig. 2 shows
an illustration of this procedure. The image on the left is
a query image and the other images are the top 4 matches
reported by FabMAP2.

E. Loop Closures Prediction

As we are mainly interested in the possible paths through
the unknown environment in order to find loop closures
and not necessarily the exact geometry, we reduce the maps



Fig. 3. Illustration of the loop closures prediction. Left: So far explored map with the frontier under consideration (blue circle). Middle: One map from
the predictive belief (in red) superimposed on the map explored so far. Right: Voronoi diagram used for the path search.

Fig. 4. Illustration of the active loop closing. Left: prediction of the possible path with the loop closure shown in blue. Middle: the robot explores the
path along the predicted loop closure and perceives the actual structure of the scene. The graph in the already explored environment shows the pose graph
of the SLAM system. Right: successful loop closure Please note that the predicted environment is actually not identical with the real environment but
reveals a similar structure. This similarity resulted in the shown loop closure.

reported by FabMAP2 to extended Voronoi graphs [2] and
do all further computations on these graphs.

FabMAP2 provides us with candidates of matching maps
but no geometric alignment between the query map and
the reported ones. Thus, we align each map reported by
FabMAP2 with our query map. This can be done in a robust
manner through a RANSAC-based alignment of the Voronoi
graphs using its junction points. Fig. 3 shows an example of
a Voronoi graph aligned with the map explored so far.

The next step, is to search for possible loop closures, for
which we use the extended Voronoi graph. Starting from the
frontier point, we traverse the Voronoi graph in a breadth-
first manner. During the traversal, we check if the Voronoi
graph leads to a position that is close to any other frontier
in the map built so far. If this is the case, we regard that
as a possible loop closure. Such a situation is illustrated in
the left image of Fig. 4. This process is executed for each
frontier.

F. Estimating the Probability of Closing a Loop

Each map reported by FabMAP2 comes with a likelihood.
Thus, we can approximate the probability of closing a loop
when executing an exploration action as

Sf =
∑

m∈M(f)

l(m)
∑

c∈C(f ,m)

l(c | m) (7)

Here, M(f) is the set of matches returned by FabMAP2
when querying with the frontier f , and l(m) the likelihood

of a match m. The term C(f,m) refers to the set of pos-
sible loop closures computed according to the breadth-first
traversal explained above and l(c | m) is the likelihood that
the loop closures can be reached. We assume that l(c | m) is
proportional to the inverse length of the path of the predicted
loop closure. This means that short loop closures are more
likely than long ones.

Assuming that every executed loop closure through un-
known areas of the map yields the same expected uncertainty
reduction, we can approximate the expected information gain
Itraj of Eq. (6) with the score Sf according to Eq. (7). This
is clearly a strong assumption but we argue that a high score
indicates a high expected gain from exploring the frontier.

V. ROBUST HOMING
USING MAP CONSISTENCY CHECKS

Under the assumption that we can ensure the consistency
of the current map, homing is a comparably easy task. It
basically consists of computing a collision-free path from
the current location to the starting location and following
the planned path with a standard navigation pipeline. Such a
navigation system would, for example, localize the robot in
the map built so far and plan the shortest path towards home
using A* or a similar approach. If the map, however, is not
consistent because the underlying SLAM system has failed,
this approach is likely to lead to a deadlock situations from
which the robot cannot escape easily.



To ensure a robust exploration of the environment, we ad-
dress the problem of robust homing in a two-stage approach.
First, while mapping the environment, a path is computed
from the current location towards home assuming the map
is consistent. Then, we perform the recently proposed map
consistency estimation approach by Mazuran et al. [19] to
evaluate if the map is consistent with a given confidence
level. If the path towards home is consistent, and we finished
exploring the environment, we simply execute this plan. If
the path towards home is not consistent, we aim at reversing
the trajectory of the robot taken so far by aligning the current
observation with the observations obtained on the way from
the starting location to the current one. This yields a robust
strategy to bring a robot home to its starting location.

A. Map Consistency Test

Our map consistency estimation approach proposed previ-
ously in [19] builds upon a pose-graph representation, i.e.,
the location of the robot from which individual observations
have been taken. We start with evaluating the consistency
of pairs of range readings. The approach of Mazuran et al.
describes the discrepancy between two range scans by com-
puting how much the two scans occlude each others free
space.

To estimate the occlusion of the free space, we compute
for each scan the polygon of the robot’s pose and all end
points of the range scan. Such polygons define the free space
covered by the scan taken from the robot’s pose. The intuition
is that both scans are consistent with each other if none
of the end points of the first scan lies inside the polygon
of the second one and vice versa. In [19], we define an
inconsistency distance d(p) for a point p, which lies inside
the polygon of another scan, as the Euclidean distance of
a point p to the closest point on the polygon boundary of
the other scan. Intuitively speaking, for a consistent map,
we assume that the inconsistency distances d(p) are in line
with the sensor noise of the proximity sensor. Substantially
larger values for d(p) may indicate that the scans are not
properly aligned and the map may be inconsistent in local
neighborhood of the scans.

More concretely, we can expect that, under the assumption
of a correct alignment of two scans, on average 50% of the
end points from the first scan have an inconsistency distance
d(p) > 0 in the second scan and vice versa. This is due
to the sensor noise in the range measurements. According
to [19], we can formulate a statistical test for the sum of
inconsistency distances d(p). This test evaluates if pairs of
scans are consistent given the sensor noise or reveal a larger
error and thus an inconsistency.

To assess global map consistency, we could conduct this
test for all pairs of scans and consider a map to be consistent
if all tests are successful. The problem, however, is that
a single statistical test will produce the wrong result with
probability α. Thus, if we test a single scan, which overlaps
with r other scans, this yields a type I error probability
of 1 − (1 − α)r and thus renders the direct application of
the pairwise approach unsuitable. The key trick is to model
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Fig. 5. The top image shows the map built so far with the detected
inconsistencies (inconsistent scans are shown in red). The middle one shows
a submap that is built using only the scans recorded around the A* path
from A to B computed in the full map. In this example, no inconsistencies
are present and none are detected. The bottom image is done in the same
way as the middle one, but the A* path is computed from C to D and here,
the map inconsistencies are correctly detected.

the outcome of the pairwise hypothesis test as a Bernoulli-
distributed random variable with parameter α. As a result of
that, the number of failed tests follows a binomial distribution
with parameters α and r. Given that, we can compute the
maximum number ξ̂ of tests that are allowed to fail at a
confidence level 1− α′ as

ξ̂ = min
0≤ξ≤r

ξ
∣∣∣∣∣∣

r∑
i=ξ+1

(
r

i

)
αi(1− α)r−i ≤ α′

 . (8)

This allows for computing a cascaded hypothesis test for
all overlapping scans: We perform all pairwise hypothesis
tests. If the number of failed tests is smaller than ξ̂, the
overall consistency test is positive otherwise negative. For
more details, we refer the reader to [19].

B. Map Consistency Estimate for Finding the Way Home

Given the consistency test presented above, we can per-
form a mathematically sound statistical test to evaluate if
a map is consistent or not. However, what the robot really



Fig. 6. Partial view of the 3D model of the environment of the Priscilla
catacombs built from two ASUS Xtion cameras.

needs to know is not the consistency of the full map. Instead,
it is sufficient to know if it can safely move along a specific
path through the environment to the starting location. Thus,
we plan a path with A* assuming that the current map is
consistent and extend our previous statistical consistency
check to consider only the scans along that path. To achieve
this, we select all recording locations that were closer than
twice the maximum sensor range away from the trajectory
planned with A*. Examples of such partial maps are depicted
in Fig. 5. The top image shows an inconsistent 2D map
of the Priscilla catacombs. Directly applying the approach
described in [19] would label the whole map as inconsistent.
In contrast to that, if the robot only takes into account the
shortest route from A to B, he can still safely perform the
navigation task, as shown in the middle image of the same
figure. This is not the case if the robots wants to go from C
to D as he will encounter an inconsistent part of the map on
its way.

In terms of the persistent data structure that is used to store
all the information, we use a generalization of a pose graph.
Each node in the graph corresponds to a pose of the robot
at time t. In addition to that, each node stores the original
odometry pose Xt and the corresponding 3D point cloud
ct as well as the 2D scan. To efficiently represent this, the
pose graph with the nodes Xt itself is kept in memory but
the corresponding point clouds ct are stored on disk and are
loaded on demand.

C. Robust Homing by Rewinding the Trajectory

Once the consistency check has identified that the submap
including the path is inconsistent, we need to perform the

trajectory rewinding to bring the robot home safely. We can
view the robot’s forward trajectory as a series of 3D poses of
the robot {X0, . . . , Xn}. The task of rewinding the trajectory
is to drive the robot from Xn to X0 while correcting for the
error in odometry. The correction of the odometry error is
done by aligning the point clouds obtained while performing
trajectory rewinding with the ones corresponding to poses
from Xn to X0. Note that we subsample the trajectory in
such way that each pose Xi is either 1m away from the
previous one or that there is a difference of at least 10◦ in
yaw between these two poses.

Without loss of generality, let us consider that the robot
has to carry out the action to move from Xi to Xj and
to compensate for the error in odometry. To do that, the
robot exploits the current point cloud ccurrent obtained after
executing the movement from Xi to Xj . In an ideal world,
the command should have brought the robot to the pose Xj .
In reality, there is an error introduced by slippage, uneven
ground etc. Thus, we align ccurrent with cj . To achieve that,
we use a recent robust variant of ICP called NICP [26]
to find the discrepancy between the point cloud that the
robot expects to perceive and what it actually perceives. The
NICP method extends point-to-plane error metric proposed in
Generalized ICP [25] by accounting not only for the metric
distance between the points but also for the curvature of
the underlying surface. The transformation between the point
clouds provided by the matching algorithm can be viewed as
the difference in the 3D poses at which the two point clouds
ccurrent and cj are obtained. The transformation reported by
the NICP algorithm corresponds to T∆ and thus leads to the
relative position of ccurrent expressed in the local coordinate
frame defined by Xj . Knowing the pose Xj and the pose of
ccurrent relative to it through T∆ enables us to compute the
current position of the robot in the global odometry frame:
Xcurrent = TjT∆, where Tj is a transformation matrix that
corresponds to the pose Xj in the world coordinate frame.

We use this new 3D pose Xcurrent to generate a motion
command to reach the next pose chosen from the recorded
trajectory. As we have a wheeled platform that moves on
the ground, we have no control over the height and attitude.
Thus we generate 2D navigation commands for the robot.
We continue the above-described process until the robot is
within dmax near its starting pose X0.

Note that our method relies on robust incremental point
cloud matching. The ICP-based algorithms tend to converge
to a local minimum while performing the optimization of
the objective function. This usually happens in either very
cluttered environments (objective function has very high
variation with multiple local minima) or, on the contrary,
in the ones that are very feature-scarce (few distinct very
narrow local minima). We found that using the NICP variant
of ICP, which takes into account the normals of the surface,
our method is able to handle the alignment errors well. In
addition to that, we perform a simple consistency check be-
tween odometry and the ICP result—in case of a substantial
disagreement, we temporarily rely on odometry and after the
next motion NICP can again register the point clouds well.
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Fig. 7. Two performance comparisons in constant odometry bias scenario. On the left, the original map. In the middle, the closer frontier approach. On
the right, our prediction-based approach. Note that the nearest frontier approach produces a map that is non consistent with the original one, so that the
robot can not continue the exploration task. The map produced by the prediction-based approach is instead consistent with the original one.

VI. EXPERIMENTS

The experiments are designed to illustrate (i) the advan-
tages of our predictive exploration approach, if it is safe, and
(ii) that the robot can rewind trajectories in case of failure
of the mapping system.

For evaluating the next view point selection approach,
we use a standard frontier-based exploration approach as
a baseline and show that our exploration approach selects
frontiers that lead to loop closures which in turn result in
improved maps of the environment. The underlying mapping
framework for all exploration experiments is a state-of-the-
art graph-based SLAM system, which uses g2o [17] and
FLIRT features to speed up the search for possible data
associations [35], uses scan matching for incremental align-
ments, and applies single cluster graph partitioning to resolve
ambiguities as proposed by Olson [22]. The exploration and
homing systems have been implemented as ROS modules.

A. Map Comparisons

First, we compare the quality of the maps obtained with
frontier-based exploration vs. our predictive exploration.
The environments considered here are parts of the Roman
catacomb Priscilla, a difficult to traverse and large-scale
underground environment in Rome. The robot is equipped
with tracks and thus its odometry is in general worse than
the one of a wheeled robot and it sometimes reveals a
(temporarily) bias to one side.

Fig. 7 illustrates the obtained results for two environments
using exactly the same mapping system and identical pa-
rameters for the comparison. The images on the left are
the “ground truth” maps obtained from manual surveys. The
images in the second column correspond to the results of
the frontier-based exploration, while the images on the right
show our approach. As can be seen already visually, our
approach yielded a consistent model of the environment,
while the frontier-based approach failed. Using the frontier-
based approach the robot was unable to continue its explo-
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Fig. 8. Mean and standard deviation of the distances traveled in the frontier-
based approach and in the proposed approach.

ration task due to an inconsistent map that prevented the
computation of further exploration actions. We performed
similar experiments in different nested tunnel environment
and obtained comparable results.

B. Exploration Path Length

The advantages of the prediction-based approach come at a
cost—the cost of traversing exploration paths that are longer
than the ones generated by the frontier-based approach.
This experiment is designed to evaluate the increase in path
length. As we are not able to obtain consistent maps for the
frontier-based approach under a realistic noise model for the
task under consideration, we executed this evaluation under
zero noise in the simulator. Using a zero noise odometry, also
the frontier-based system is able to build consistent maps.
In this setting there is no advantage in using our predictive
approach as the pose uncertainty is zero and no uncertainty
reduction is gained from closing loops. We compared the
distances traveled for the frontier-based and our approach.
The distances traveled are summarized in Fig. 8. In the worst
case scenario, the path generated by our approach was 1.85
times longer than the one of the frontier-based approach. The
minimum increase was a factor of 1.5. Generating on average
a 1.7 times longer trajectory is clearly an overhead—for
actively closing loops and in this way reducing uncertainty,
however, this price must be paid.

C. Statistical Map Consistency Check and Robust Homing

After the robot finishes exploring the environment, it needs
to find its way home. The evaluation of our framework is
designed to illustrate the performance of the statistical map
consistency check in conjunction with an approach to safely
and robustly rewind the trajectory to return the robot to the
starting position should the consistency check report the map
as inconsistent.

First, Fig. 5 illustrates an example of the statistical map
consistency check performed on range data from the Priscilla
catacombs in Rome. The partial maps computed around the
shortest path are usually substantially smaller than the map
of the whole environment, especially if the environment
has multiple alternative branches and forms a complicated
network of corridors or rooms as we experience it often
in catacombs or underground mines. Testing smaller maps
results in speed-up of the statistical consistency evaluation
procedure. The timings for the maps presented in Fig. 5
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Fig. 9. Illustration of rewinding the trajectory through the office environ-
ment. The robot is steered from the bottom “tail” of the depicted trajectory
to the upper-right one. Black line denotes the odometry poses saved while
the robot is steered, gray denotes the odometry on the way back, red shows
the temporary destination poses picked from the odometry and blue shows
the same poses after the ICP correction. The pictures show several example
locations visited by the robot. These feature tight doors to rooms as well
as feature-scarce corridors.

are as follows: full map shown on top—2,930 ms; middle—
140 ms; bottom—170 ms. The computational time depends
on the number of scans to analyze and the gain in speed
grows with the difference between the sizes of the full and
the reduced maps and the overlapping scans. We performed
the map consistency test on five different datasets recorded
in the Priscilla catacomb and the consistency check always
generated correct results. In sum, testing a map along the
planned path for consistency takes less than 200 ms and thus
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Fig. 10. Three experiments performed in different settings. The meaning
of the lines is the same as in Fig. 9 with the difference that the top and the
bottom graphs do not show the pure odometry measurement on the return
path. The average deviation from the original trajectory is between 4 cm
(top dataset) and 6 cm (bottom dataset).

can be executed on the fly on the robot. Additionally, most
of the computations could be cached when dealing with huge
maps (although this was not done here). In this case, the test
would only require a recomputation if the SLAM back-end
changes the configuration of the pose graph substantially.

Second, if the proposed statistical consistency check eval-
uates the map as inconsistent we need a robust way to return
the robot home to the starting location. We evaluate the
ability of our approach to rewind the trajectory by carrying
out 20 experiments in our lab environment. One of these
experiments is illustrated in Fig. 9. We steered the robot on
a rather complicated trajectory through an obstacle parcour
containing narrow passages as well as areas with lots of
flat wall, which represents a challenge for the matcher. The
robot activated the “rewind the trajectory” behavior after we
(manually) broke the SLAM system so that it followed the
way in reverse order using the NICP-based pose correction.

In Fig. 9, the original odometry measurements from the
forward path are drawn in black (hardly visible as the
red trajectory perfectly overlays it). The red line illustrates
the subsampled trajectory that the robot has selected as its
sequence {X0, . . . , Xn} for rewinding the trajectory. Both

trajectories overlay because the robot does not use any
global map and relies solely on the poses he recorded in
the odometry frame (to navigate back).

The gray line depicts the pure odometry measurements
recorded while performing rewinding while the blue line
shows the poses of the robot after the alignment by NICP.
As can be seen, the robot accurately follows the previous
trajectory with our approach as the blue and the red trajec-
tories are similar. In this experiment, the average deviation
of the rewinding trajectory is approximately 5 cm. From the
gray trajectory, we can furthermore see that the odometry
error must be taken into account—otherwise, the robot would
deviate substantially from the reference path (and would
collide with walls and obstacles).

We executed similar experiments in 20 different settings
and were always able to robustly drive the robot back to
the start location. Three examples are illustrated in Fig. 10.
Overall, this evaluation suggest that our robot is able to
rewind different trajectories through the environment, ro-
bustly handling corridor-like environments with multiple
narrow passages such as the doorways. Note that the robot
cannot observe the doorways before it fully passed through
it. Only by following the reference trajectory precisely, the
robot can return.

VII. CONCLUSION

The ability to robustly operate without user intervention
is an important capability for exploration robots in real-
world settings. In this paper, we proposed a novel approach
for autonomous exploration of unknown environments with
robust homing. The key contributions of this work are two-
fold. First, we presented a technique to predict possible
environment structures in the unseen parts of the robot’s
surroundings based on previously explored environments. We
exploit this belief to predict possible loop closures that the
robot may experience when exploring an unknown part of the
scene. This allows the robot to actively reduce the uncertainty
in its belief through its exploration actions. Secondly, we
presented a homing system that addresses the problem of
returning a robot operating in an unknown environment to
its starting position even if the underlying SLAM system
fails. We combined a statistical map consistency test with an
NICP-based approach to precisely rewind a previously taken
trajectory.

We implemented our approach and executed it both, in
simulation and on a real autonomous robot. Our experi-
ments illustrate that our technique allows for an effective
exploration of difficult to map environments. By actively
closing loops, we are able to obtain consistent maps of the
environment. In contrast to that, a traditional frontier-based
exploration approach is not able to successfully explore the
scene if the SLAM system fails. In the case of a mapping
failure leading to an inconsistent map, the proposed robust
homing system can accurately rewind trajectories guiding the
robot through narrow passages such as doorways, even when
the robot could not see these narrow spaces while navigating
through them.
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[11] P. Furgale, P. Krüsi, F. Pomerleau, U. Schwesinger, F. Colas, and
R. Siegwart. There and back again-dealing with highly-dynamic scenes
and long-term change during topological/metric route following. In
ICRA14 Workshop on Modelling, Estimation, Perception, and Control
of All Terrain Mobile Robots, 2014.

[12] G. Hitz, A. Gotovos, F. Pomerleau, M.-E. Garneau, C. Pradalier,
A. Krause, and R.Y. Siegwart. Fully autonomous focused explo-
ration for robotic environmental monitoring. In Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA), 2014.

[13] D. Holz, N. Basilico, F. Amigoni, and S. Behnke. A comparative
evaluation of exploration strategies and heuristics to improve them. In
Proc. of the European Conference on Mobile Robots (ECMR), pages
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